[1] E. Abada, H. Lakhal, and M. Maouni, Topological, degree method for fractional Laplacian system, Bull. Math. Anal. Appl. 13 (2021), 10–19.
[2] E. Abada, H. Lakhal, and M. Maouni, Existence and uniqueness of solution for a nonlinear fractional problem involving the distributional Riesz derivative, Math. Methods Appl. Sci. 45 (2022), 6181–6193.
[3] L. Abatangelo, V. Felli, and B. Noris, On simple eigenvalues of the fractional Laplacian under removal of small fractional capacity sets, Commun. Contemp. Math. 22 (2020), no. 8, 1950071.
[4] B. Barrios, E. Colorado, A. de Pablo, and U. Sanchez, On some critical problems for the fractional Laplacian operator, J. Differ. Equ. 252 (2012), 6133–6162.
[5] K. Diethelm and N.J. Ford, The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2010.
[6] L. Djilali and A. Rougirel, Galerkin method for time fractional diffusion equations, J. Elliptic Parabol. Equ. 4 (2018), 349–368.
[7] S. Dob, H. Lakhal, and M. Maouni, Existence and Uniqueness of solutions for a nonlinear fractional Elliptic system, Malays. J. Math. Sci., 15 (2021), 347–356.
[8] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
[9] A.-A. Kilbas, H.-M. Srivastava, and J.-J. Trujillo, Theory and Applications of Fractional Differential Equation, Elsevier, Amsterdam, 2006.
[10] H. Lakhal, B. Khodja, and W. Gharbi, Existence results of nontrivial solutions for a semi linear elliptic system at resonance, J. Adv. Res. Dyn. Control Syst. 5 (2013), 1–12.
[11] A.-M. Nakhushev, Fractional Calculus and its Application, FIZMATLIT, Moscow, 2003. [In Russian]
[12] K.-B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.
[13] Y. Ouedjedi, A. Rougirel, and K. Benmeriem, Galerkin method for time fractional semilinear equations, Fract. Calc. Appl. Anal. 24 (2021),755–774.
[14] C. Saadi, H. Lakhal, K. Slimani, and S. Dob, Existence and uniqueness of distributional solution for semilinear fractional elliptic equation involving new operator and some numerical results, Math. Methods Appl. Sci. 45 (2022), 3843–3854.
[15] C. Saadi, H. Lakhal, K. Slimani, and S. Dob, Distributional solution for semilinear system involving fractional gradient and a numerical example, Int. J. Nonlinear Anal. Appl. 14 (2023), no. 1, 1175–1185.
[16] R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc. 367 (2015), 67–102.
[17] K. Slimani, C. Saadi, and H. Lakhal, Existence results for convection-reaction fractional problem involving the distributional Riesz derivative, Math. Methods Appl. Sci. 45 (2022), 10247–10255.