[1] A. Amini-Harandi and H. Emami, A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations, Nonlinear Anal. 72 (2010), 2238–2242.
[2] S. Banach, Sur les operationes dans les ensembles abstraits et leur application aux equation integrales, Fund. Math. 3 (1922), 133–181.
[3] D.W. Boyd and J.S.W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458–463.
[4] P. Chaipunya, Y.J. Cho, and P. Kumam, Geraghty-type theorems in modular metric spaces with application to partial differential equation, Adv. Differ. Equ. 83 (2012), 1687–1847.
[5] V.V. Chistyakov, Metric Modular spaces, I basic concepts, Nonlinear Anal. Theory Meth. Appl. 72 (2010), 1–14.
[6] V.V. Chistyakov, Fixed point theorem for contractions in metric modular spaces, arXiv preprint arXiv:1112.5561, 2011.
[7] L.B. Ciric, On contraction type mappings, Math. Balk. 1 (1971), 52–57.
[8] L.B. Ciric, N. Cakic, M. Rajovic, and J.S. Ume, Monotone generalized nonlinear contractions in partially ordered metric spaces, Fixed Point Theory Appl. 2008 (2008), Article ID 131294.
[9] S.H. Cho, J.S. Bae, and E. Karapinar, Fixed point theorems for α-Geraghty contraction type maps in metric spaces, Fixed Point Theory Appl. 2013 (2013), Article ID 329.
[10] S.C. Chu and J.B. Diaz, Remarks on a generalization of Banach’s mappings, J. Math. Anal. Appl. 11 (1965), 440–446.
[11] B.K. Dass and S. Gupta, An extension of Banach contraction mapping principle through rational expressions, Indian. J. Pure. Appl. Math. 6 (1975), 1455–1458.
[12] M. Frechet, Sur quelques points du calcul functionnel, Rend. Circ. Mat. Palermo 22 (1906), 1–72.
[13] M.A. Geraghty, On contractive mapping, Proc. Amer. Math. Soc. 40 (1973), 604–608.
[14] M.E. Gordji, Y.J. Cho, and S. Pirbavafa, A generalization of Geraghty’s theorem in partial ordered metric spaces and application to ordinary differential equations, Fixed Point Theory Appl. 74 (2012), 1687–1812.
[15] G. Hardy and T. Rogers, A generalization of a fixed point theorem of Reich, Canad. Math. Bull. 2 (1973), 201–206.
[16] D.S. Jaggi, Some unique fixed point theorems, Indian J. Pure. Appl. Math. 8 (1977), 223–230.
[17] R. Kannan, Some results on fixed points, Bull. Calcutta. Math. Soc. 60 (1968), 71–76.
[18] A. Meir and E. Keeler, A theorem on contraction mapping, J. Math. Anal. Appl. 28 (1969), 326—329.
[19] C. Mongkolkeha, W. Sintunavarat, and P. Kumam, Fixed point theorem for contraction mappings in modular spaces, Fixed Point Theory Appl. 2011 (2011), 9 pages.
[20] H. Nakano, Modulared Semi-Ordered Linear Spaces, Maruzen Company, 1950.
[21] G.A. Okeke and D. Francis, Fixed point theorems of metric tower in a complete metric spaces, J. Anal., 2023 (2023).
[22] G.A. Okeke, D. Francis, and A. Gibali, On fixed point theorems for a class of α−ν−Meir–Keeler–type contraction mapping in modular extended b-metric spaces, J. Anal. 30 (2022), no. 3, 1257–1282.
[23] G.A. Okeke, D. Francis, M. de la Sen, and M. Abbas, Fixed point theorems in modular G-metric spaces, J. Ineq. Appl. 2021 (2021), 1–50.
[24] G. A. Okeke, D. Francis, Fixed point theorems for asymptotically T-regular mappings in preordered modular G-metric spaces applied to solving nonlinear integral equations, J. Anal. 2021 (2021).
[25] G. A. Okeke, D. Francis, and M. de la Sen, Some fixed point theorems for mappings satisfying rational inequality in modular metric spaces with applications, Heliyon 6 (2020), e04785.
[26] H.K. Pathak, An Introduction to Nonlinear Analysis and Fixed Point Theory, Springer-Verlag New York Inc., 2018.
[27] O. Popescu, Some new fixed point theorems for α-Geraghty contraction type maps in metric spaces, Fixed Point Theory Appl. 2014 (2014), 190.
[28] E. Rakotch, A note on contractive mappings, Proc. Amer. Math. Soc. 13 (1962), 459–465.
[29] V.M. Sehgal, A fixed point theorem for mappings with a contractive iterate, Proc. Amer. Math. Soc 23 (1969), 631–634.
[30] S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull. 14 (1971), 121–124.
[31] S. Reich, Fixed points of contractive functions, Boll. Unione Mat. Ital. 5 (1972), 26–42.
[32] C.S. Wong, Common fixed points of two mappings, Pac. J. Math. 48 (1973), 299–312.
[33] J.S.W. Wong, Mappings of contractive type on abstract spaces, J. Math. Anal. Appl. 37 (1972), 331–340.