[1] C.D. Aliprantis and O. Burkinshaw, Positive Operators, Springer Science, Business Media, 2006.
[2] S. Alpay, B. Altin, and C. Tonyali, On property (b) of vector lattice, Positivity 7 (2003), no. 1, 135–139.
[3] B. Aqzzouz and J. Hmichane, Some results on order weakly compact operators, Math. Bohemica 134 (2009), no. 4, 359–367.
[4] K. Haghnejad Azar, A generalization of order convergence in the vector lattices, Facta Univer. Ser. Math. Inf. 37 (2022), 521–528.
[5] Y. Deng, M. O’Brien, and V.G. Troitsky, Unbounded norm convergence in Banach lattices, Positivity. 21 (2017), 963–974.
[6] N. Gao, V.G. Troitsky, and F. Xanthos, Uo-Convergence and its applications to Cesaro means in Banach lattices, Isr. J. Math. 220 (2017), 649—689.
[7] N. Gao and F. Xanthos, Unbounded order convergence and application to martingales without probability, J. Math. Anal. Appl. 415 (2014), 931–947.
[8] S.A. Jalili, K. Haghnejad Azar, and M.B. Farshbaf Moghimi, Order-to-topology continuous operators, Positivity 25 (2021), 1313–1322.
[9] K. Haghnejad Azar, M. Matin, and R. Alavizadeh, Unbounded order-norm continuous and unbounded norm continuous operators, Filomat 35 (2021), no. 13, 4417–4426.
[10] K. Haghnejad Azar, M. Matin, and R. Alavizadeh, Weakly Unbounded Norm Topology and wun-Dunford-Pettis Operators, Rend. Circ. Mat. Palermo, II. Ser 72 (2023), 2745–2760.
[11] K.D. Schmidt, On the modulus of weakly compact operators and strongly additive vector measures, Proc. Amer. Math. Soc. 102 (1988), no. 4, 862–866.