Existence of a solution for a strongly nonlinear elliptic perturbed problem in anisotropic Orlicz-Sobolev space

Document Type : Research Paper

Authors

Equipe EDP et calcul scientifique, laboratoire de mathematiques et leurs interactions, Faculte des Sciences, Moulay Ismail University, Meknes, Morocco

Abstract

This paper is devoted to studying the existence of a solution to the  Dirichlet problem for a specific class of elliptical anisotropic equations  of the type
\begin{eqnarray}\label{P.1}
\left \{\begin{array}{rl}
&A(u)+g(x,u)= f  \ \  in\
\Omega
\\
& u=0\ \ on\ \partial \Omega,
\end{array}
\right.
\end{eqnarray}
in the anisotropic Orlicz-Sobolev spaces, where A is a Leray-Lions operator  $A(u)=\displaystyle\sum_{i=1}^{N}-\frac{\partial}{\partial x_{i}} (a_{i}(x,D^{i} u)),$   the Carathéodory function $g(x, s )$ is a non-linear lower order term that verify some natural growth and sign conditions, where the data $f$ is framed in anisotropic Orlicz-Sobolev spaces, and it is described by an Orlicz function that does not meet the $\Delta_2$-condition. Within this framework, we prove the existence of a weak solution for our strongly nonlinear elliptic problem.

Keywords

[1] R. Aboulaich, D. Meskine, and A. Souissi, New diffusion models in image processing, Comput. Math. Appl. 56 (2008), no. 4, 874–882.
[2] R. Adams, Sobolev Spaces, Press New York, 1975.
[3] A. Alberico, G. di Blasio, and F. Feo, A priori estimates for solutions to anisotropic elliptic problems via symmetrization,  Math. Nachr. 290 (2017), 986—1003.
[4] A. Alberico, G. di Blasio, and F. Feo, Estimates for fully anisotropic elliptic equations with a zero-order term, Nonlinear Anal. 181 (2019), 249-–264.
[5] A. Alberico, G. di Blasio, and F. Feo, An eigenvalue problem for the anisotropic Φ-Laplacian, J. Dif. Equ., 269 (2020), 4853–4883.
[6] S. Antontsev and M. Chipot, Anisotropic equations: uniqueness and existence results, Differ. Int. Eq. 21 (2008), 401–419.
[7] O. Benslimane, A. Aberqi, and J. Bennouna, Existence and uniqueness of entropy solution of a nonlinear elliptic equation in anisotropic Sobolev-Orlicz space, Rendi. Circ. Mat. Palermo Ser. 2 70 (2021), no. 3 1579–1608.
[8] O. Benslimane, A. Aberqi, and J. Bennouna, The existence and uniqueness of an entropy solution to unilateral Orlicz anisotropic equations in an unbounded domain, Axiom 9 (2020), 109.
[9] O. Benslimane, A. Aberqi, and J. Bennouna, On some nonlinear anisotropic elliptic equations in anisotropic Orlicz space, Arab J. Math.Sci. 29 (2023), no. 1, 29–51.
[10] O. Benslimane, A Aberqi, and J. Bennouna, Study of some nonlinear elliptic equation with non-polynomial anisotropic growth, Adv. Oper. Theory 7 (2022), no. 3, 40
[11] G. Bonanno, G. Molica Bisci, and V. Radulescu, Quasilinear elliptic non-homogeneous Dirichlet problems through Orlicz-Sobolev spaces, Nonlinear Anal. 75 (2012), 4441–4456.
[12] A. Cianchi, A fully anisotropic Sobolev inequality, Pac. J. Math. 196 (2000), 283–294.
[13] M. Bendahmane, M. Chrif, and S. El Manouni, An Approximation Result in Generalized Anisotropic Sobolev spaces and Applications, Anal. Appl. 30 (2011), 341–353.
[14] G. Barletta and A. Cianchi, Dirichlet problems for fully anisotropic elliptic equations, Proc. Roy. Soc. Edinburgh Sect. A 147 (2017), 25-–60.
[15] F.E. Browder, Existence theorems for nonlinear partial differential equation, Proc. Symp. Pure Math., Vol. 16, Amer. Math. Soc. Providence, R.I., 1970, pp. 1–60.
[16] A. Cianchi, Symmetrization in anisotropic elliptic problems, Comm. Part. Di. Eq. 32 (2007), 693–717.
[17] A. Di Castro, Existence and regularity results for anisotropic elliptic problems, Adv. Nonlinear Stud. 9 (2009), 367-–393.
[18] R. Elarabi, B. Lahmi, and H. Ouyahya, On some nonlinear elliptic problems in anisotropic Orlicz–Sobolev spaces, Adv. Oper. Theory 8 (2023), no. 2, 24.
[19] J.P. Gossez and V. Mustonen, Variational inequalities in Orlicz-Sobolev spaces, Nonlinear Anal.: Theory Meth. Appl. 11 (1987), 379–392.
[20] J.P. Gossez, Some approximation properties in Orlicz-Sobolev spaces, Studia Math. 74 (1982), 17–24.
[21] J.P. Gossez, Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Amer. Math. Soc. 190 (1974), 163–205.
[22] P. Gwiazda, A. Swierczewska-Gwiazda, and A. Wroblewska, Monotonicity methods in generalized Orlicz spaces for a class of non-Newtonian fluids, Math. Meth. Appl. Sci. 18 (2010), no. 7, 125–137.
[23] M.A. Krasnosel’skii and Y.B. Rutickii, Convex Functions and Orlicz Spaces, P. Noordhoff, Groningen, The Netherlands, 1961.
[24] L.M. Kozhevnikova, On the entropy solution to an elliptic problem in anisotropic Sobolev–Orlicz spaces, Comput. Math. Math. Phys. 57 (2017), 434-–452.
[25] N.S. Papageorgiou and A. Scapellato, Positive solutions for anisotropic singular (p,q)-equations, Z. Angew. Math. Phys. 71 (2020), 155.
[26] N.S. Papageorgiou and A. Scapellato, Positive solutions for anisotropic singular Dirichlet problems, Bull. Malays. Math. Sci. Soc. 45 (2022), no. 3, 1141-1168.
[27] B. Song, Anisotropic diffusions with singular advections and absorptions part 1: existence, Appl. Math. Lett. 14 (2001), no. 7, 811-–816.
[28] M. Sidi and E.l. Vally, Strongly nonlinear elliptic problems in Musielak-Orlicz-Sobolev spaces, Adv. Dyn. Syst. Appl. 8 (2013), no. 1, 115–124.
Volume 16, Issue 4
April 2025
Pages 161-168
  • Receive Date: 28 January 2024
  • Accept Date: 19 March 2024