Existence of a solution for a strongly nonlinear elliptic perturbed problem in anisotropic Orlicz-Sobolev space

Document Type : Research Paper

Authors

Equipe EDP et calcul scientifique, laboratoire de mathematiques et leurs interactions, Faculte des Sciences, Moulay Ismail University, Meknes, Morocco

10.22075/ijnaa.2024.33117.4928

Abstract

This paper is devoted to studying the existence of a solution to the  Dirichlet problem for a specific class of elliptical anisotropic equations  of the type
\begin{eqnarray}\label{P.1}
\left \{\begin{array}{rl}
&A(u)+g(x,u)= f  \ \  in\
\Omega
\\
& u=0\ \ on\ \partial \Omega,
\end{array}
\right.
\end{eqnarray}
in the anisotropic Orlicz-Sobolev spaces, where A is a Leray-Lions operator  $A(u)=\displaystyle\sum_{i=1}^{N}-\frac{\partial}{\partial x_{i}} (a_{i}(x,D^{i} u)),$   the Carathéodory function $g(x, s )$ is a non-linear lower order term that verify some natural growth and sign conditions, where the data $f$ is framed in anisotropic Orlicz-Sobolev spaces, and it is described by an Orlicz function that does not meet the $\Delta_2$-condition. Within this framework, we prove the existence of a weak solution for our strongly nonlinear elliptic problem.

Keywords

[1] R. Aboulaich, D. Meskine, and A. Souissi, New diffusion models in image processing, Comput. Math. Appl. 56 (2008), no. 4, 874–882.
[2] R. Adams, Sobolev Spaces, Press New York, 1975.
[3] A. Alberico, G. di Blasio, and F. Feo, A priori estimates for solutions to anisotropic elliptic problems via symmetrization,  Math. Nachr. 290 (2017), 986—1003.
[4] A. Alberico, G. di Blasio, and F. Feo, Estimates for fully anisotropic elliptic equations with a zero-order term, Nonlinear Anal. 181 (2019), 249-–264.
[5] A. Alberico, G. di Blasio, and F. Feo, An eigenvalue problem for the anisotropic Φ-Laplacian, J. Dif. Equ., 269 (2020), 4853–4883.
[6] S. Antontsev and M. Chipot, Anisotropic equations: uniqueness and existence results, Differ. Int. Eq. 21 (2008), 401–419.
[7] O. Benslimane, A. Aberqi, and J. Bennouna, Existence and uniqueness of entropy solution of a nonlinear elliptic equation in anisotropic Sobolev-Orlicz space, Rendi. Circ. Mat. Palermo Ser. 2 70 (2021), no. 3 1579–1608.
[8] O. Benslimane, A. Aberqi, and J. Bennouna, The existence and uniqueness of an entropy solution to unilateral Orlicz anisotropic equations in an unbounded domain, Axiom 9 (2020), 109.
[9] O. Benslimane, A. Aberqi, and J. Bennouna, On some nonlinear anisotropic elliptic equations in anisotropic Orlicz space, Arab J. Math.Sci. 29 (2023), no. 1, 29–51.
[10] O. Benslimane, A Aberqi, and J. Bennouna, Study of some nonlinear elliptic equation with non-polynomial anisotropic growth, Adv. Oper. Theory 7 (2022), no. 3, 40
[11] G. Bonanno, G. Molica Bisci, and V. Radulescu, Quasilinear elliptic non-homogeneous Dirichlet problems through Orlicz-Sobolev spaces, Nonlinear Anal. 75 (2012), 4441–4456.
[12] A. Cianchi, A fully anisotropic Sobolev inequality, Pac. J. Math. 196 (2000), 283–294.
[13] M. Bendahmane, M. Chrif, and S. El Manouni, An Approximation Result in Generalized Anisotropic Sobolev spaces and Applications, Anal. Appl. 30 (2011), 341–353.
[14] G. Barletta and A. Cianchi, Dirichlet problems for fully anisotropic elliptic equations, Proc. Roy. Soc. Edinburgh Sect. A 147 (2017), 25-–60.
[15] F.E. Browder, Existence theorems for nonlinear partial differential equation, Proc. Symp. Pure Math., Vol. 16, Amer. Math. Soc. Providence, R.I., 1970, pp. 1–60.
[16] A. Cianchi, Symmetrization in anisotropic elliptic problems, Comm. Part. Di. Eq. 32 (2007), 693–717.
[17] A. Di Castro, Existence and regularity results for anisotropic elliptic problems, Adv. Nonlinear Stud. 9 (2009), 367-–393.
[18] R. Elarabi, B. Lahmi, and H. Ouyahya, On some nonlinear elliptic problems in anisotropic Orlicz–Sobolev spaces, Adv. Oper. Theory 8 (2023), no. 2, 24.
[19] J.P. Gossez and V. Mustonen, Variational inequalities in Orlicz-Sobolev spaces, Nonlinear Anal.: Theory Meth. Appl. 11 (1987), 379–392.
[20] J.P. Gossez, Some approximation properties in Orlicz-Sobolev spaces, Studia Math. 74 (1982), 17–24.
[21] J.P. Gossez, Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Amer. Math. Soc. 190 (1974), 163–205.
[22] P. Gwiazda, A. Swierczewska-Gwiazda, and A. Wroblewska, Monotonicity methods in generalized Orlicz spaces for a class of non-Newtonian fluids, Math. Meth. Appl. Sci. 18 (2010), no. 7, 125–137.
[23] M.A. Krasnosel’skii and Y.B. Rutickii, Convex Functions and Orlicz Spaces, P. Noordhoff, Groningen, The Netherlands, 1961.
[24] L.M. Kozhevnikova, On the entropy solution to an elliptic problem in anisotropic Sobolev–Orlicz spaces, Comput. Math. Math. Phys. 57 (2017), 434-–452.
[25] N.S. Papageorgiou and A. Scapellato, Positive solutions for anisotropic singular (p,q)-equations, Z. Angew. Math. Phys. 71 (2020), 155.
[26] N.S. Papageorgiou and A. Scapellato, Positive solutions for anisotropic singular Dirichlet problems, Bull. Malays. Math. Sci. Soc. 45 (2022), no. 3, 1141-1168.
[27] B. Song, Anisotropic diffusions with singular advections and absorptions part 1: existence, Appl. Math. Lett. 14 (2001), no. 7, 811-–816.
[28] M. Sidi and E.l. Vally, Strongly nonlinear elliptic problems in Musielak-Orlicz-Sobolev spaces, Adv. Dyn. Syst. Appl. 8 (2013), no. 1, 115–124.

Articles in Press, Corrected Proof
Available Online from 16 May 2024
  • Receive Date: 28 January 2024
  • Accept Date: 19 March 2024