Boundary curvature of the numerical range of self-inverse operators

Document Type : Research Paper

Authors

1 Department of Mathematics, College of Sciences, Yasouj University, Yasouj, 75918 Iran

2 Department of Mathematics, College of Sciences, Yasouj Univer- sity, Yasouj, 75918, Iran

10.22075/ijnaa.2024.33147.4935

Abstract

In this article, firstly we investigate some properties of the boundary curvature of the numerical range. In the next, we define $M(T)$ as the smallest constant such that $dist(\lambda,\sigma(T))\leq M(T) R_\lambda (T),$ for all $\lambda \in \partial W(T)$, where $R_\lambda (T)$, the radius curvature at the point $\lambda$, is defined. Also, we investigate for non-convexoid $T$, $M(T)=\sup\frac{dist(\lambda,\sigma(T))}{R_{\lambda}(T)}$, where the supremum on the right-hand side is taken along all points $\lambda\in \partial W(T)$ with finite non-zero curvature. Finally, the value of $M(T)$ will be calculated for the self-inverse operators.

Keywords

[1] A. Abdollahi, On the self-inverse operators, Rendi. Circ. Mate. Palermo Ser. 2 58 (2009), 257–264.
[2] J. Agler, Geometric and topological properties of the numerical range, Indiana Univ. Math. J. 31 (1982), 767–777.
[3] A. Baklouti and M. Mabrouk, Essential numerical ranges of operators in semi-Hilbertian spaces, Ann. Funct. Anal. 13 (2022), 16.
[4] F.L. Bauer, On the field of values subordinate to a norm, Numer. Math. 4 (1962), 103—113.
[5] S.K. Berberian and G.H. Orland, On the closure of the numerical range of an operator, Proc. Amer. Math. Soc. 18 (1967) 499–503.
[6] P. Bhunia, S.S. Dragomir, M.S. Moslehian, and P. Kallol, Lectures on Numerical Radius Inequalities, Springer Nature, 2022.
[7] F.F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of normed Algebras, London Math. Soc. Lecture Notes Series 2, Cambridge, 1971.
[8] M. Campen, R. Capouellez, H. Shen, L. Zhu, D. Panozzo, and D. Zorin, Efficient and robust discrete conformal equivalence with boundary, ACM Trans. Graphics 40 (2021), no. 6, 1–16.
[9] L. Caston and M. Savova, I. Spitkovsky, and N. Zobin, On eigenvalues and boundary curvature of the numerical range, Linear Algebra Appl. 322 (2001), 129–140.
[10] F. Facchinei and J.S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer Science and Business Media. 2007.
[11] K. Fan, A generalization of Tychonoff’s fixed point theorem, Math. Ann. 142 (1961), 305–310.
[12] K.E. Gustafon and K.M. Rao, The Numerical Range, the Field of Values of Linear Operators and Matrices, Springer, New York, 1997.
[13] L. Hauswirth, H. Rosenberg, and J. Spruck, Infinite boundary value problems for constant mean curvature graphs in H2 × R and S2 × R, Amer. J. Math. 131 (2009), no. 1, 195–226.
[14] L. He and Z. Tan, Inverse boundary value problem for the magnetohydrodynamics equations, J. Funct. Spaces 2021 (2021), Article ID 9966687, 10 pages.
[15] J.H. Lightbourne and R.H. Martin, Projection seminorms and the field of values of linear operators, Numer. Math. 24 (1975), 151–161.
[16] G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), 29–43.
[17] F.J. Narcowich, Analytic properties of the boundary of the numerical range, Indiana Univ. Math. J. 29 (1980), 67–77.
[18] S. Niewczas, M. Sitko, and L. Madej, Influence of the grain boundary curvature model on cellular automata static recrystallization simulations, Mater. Sci. Engin. 926 (2022), 1977–1985.
[19] M. Pengzi and T. Luen-Fai, On the volume functional of compact manifolds with boundary with constant scalar curvature, Cal. Variat. Partial Differ. Equ. 36 (2009), 141–171.
[20] D. Pokorny and J. Rataj, Normal cycles and curvature measures of sets with d.c. boundary, Adv. Math. 248 (2013), 963–985.
[21] F.M. Pollack, Numerical range and convex sets, Canad. Math. Bull. 17 (1974), 295–296.
[22] M. Radjabalipour and H. Radjavi, On the geometry of numerical ranges, Pacific J. Math. 61 (1975), no. 2, 507–511.
[23] M.H.M. Rashid, On the isolated points of the operators satisfying absolute condition inequality, Rend. Circ. Mat. Palermo Ser 2 73 (2024), no. 3, 1217–1230.
[24] K. B. Sabitov and S. N. Sidorov, Initial–boundary value problem for a three-dimensional equation of the parabolic-hyperbolic type, Differ. Equ. 57 (2017), 1042–1052.
[25] K.B. Sabitov and S.N. Sidorov, Initial-boundary problem for a three-dimensional inhomogeneous equation of parabolic-hyperbolic type, Lobachevskii J. Math. 41 (2020), 2257–2268.
[26] S.N. Sidorov, Three-dimensional initial-boundary value problem for a parabolic-hyperbolic equation with a degenerate parabolic part, Azerbaijan J. Math. 12 (2022), no. 1, 49–67.
[27] M. Sprlak and P. Novak, Spherical gravitational curvature boundary-value problem, J. Geod. 90 (2016), 727–739.
[28] J.G. Stampfli and J.P. Williams, Growth conditions and the numerical range in a Banach algebra, Tohoku Math. J. 20 (1968), 417–424.
[29] O. Toeplitz, Das algebraische Analogon zu einem Satze von Fejer (German), Math. Z. 2 (1918), no. 1-2, 187–197.
[30] Y. Zhang, Toeplitz Operator and Carleson Measure on Weighted Bloch Spaces, J. Funct. Spaces 2019 (2019), Article ID 4358959, 5 pages.
[31] Y. Zhang, G. Cao, and L. He, Toeplitz operators with IMOs symbols between generalized Fock spaces, J. Funct. Spaces 2021 (2021), Article ID 8044854, 9 pages.
[32] X. Zhong, D. J. Rowenhorst, H. Beladi, and G.S. Rohrer, The five-parameter grain boundary curvature distribution in an austenitic and ferritic steel, Acta Mater. 123 (2017), 136–145.

Articles in Press, Corrected Proof
Available Online from 02 June 2024
  • Receive Date: 31 January 2024
  • Revise Date: 09 April 2024
  • Accept Date: 29 April 2024