On some anisotropic elliptic problem with measure data

Document Type : Research Paper

Authors

1 Laboratory LAMA, Department of Mathematics, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdallah University, PB 1796 Fez-Atlas, Fez, Morocco

2 Laboratory LaR2A, Departement of Mathematics, Faculty of Sciences Tetouan, Abdelmalek Essaadi University, BP 2121, Tetouan, Morocco

Abstract

We prove optimal existence results for entropy solutions to some anisotropic boundary value problems like
\begin{equation}\label{pro}
\left\{\begin{array}{lll}
-\sum_{i=1}^N D^i A_i(x, w, \nabla w)= f-\operatorname{div} F(w) \textrm{ in }\Omega, & \textrm{in }&\Omega, \\
v=0 & \textrm{on } &\partial \Omega,
\end{array}\right.
\end{equation}
where $ f \in L^{1}(\Omega) $, $ F = (F_{1}, . . . , F_{N}) $ satisfies $ F \in (C^{0}(\mathbb{R}))^{N}. $and $\Omega $ is a bounded, open subset of ${\mathbb{R}^{N}}$, $ N\geq 2$, and the function $A_{i}(x, s, \xi)$ verify the large monotonicity condition. The construction of the proof of our theorem is done by using Minty's Lemma in its modified version.

Keywords

[1] Y. Akdim, E. Azroul, and M.Rhoudaf, Existence of T-solution for degenerated problem via Minty’s Lemma, Acta Math. Sinica English Ser. 24 (2008),431–438.
[2] O. Azraibi, B. El Haji, and M. Mekkour, Entropy solution for nonlinear elliptic boundary value problem having large monotonicity in Musielak-Orlicz-Sobolev spaces, Asia Pac. J. Math. 10 (2023), no. 7.
[3] O. Azraibi, B. El Haji, and M. Mekkour, Nonlinear parabolic problem with lower order terms in Musielak-Sobolev spaces without sign condition and with Measure data, Palestine J. Math. 11 (2022), no. 3, 474–503.
[4] O. Azraibi, B. EL haji, and M. Mekkour, On some nonlinear elliptic problems with large monotonicity in Musielak–Orlicz–Sobolev spaces, J. Math. Phys. Anal. Geom. 18 (2022), no. 3, 1-–18.
[5] O. Azraibi, B. EL Haji, and M. Mekkour, Strongly nonlinear unilateral anisotropic elliptic problem with data, Asia Math. 7 (2023), no. 1, 1–20.
[6] A. Benkirane and A. Elmahi, Almost everywhere convergence of the gradient of solutions to elliptic equations in Orlicz spaces, Nonlinear Anal. T.M.A. 28 (1997), no. 11, 1769–1784.
[7] A. Benkirane, B. El Haji, and M. El Moumni, On the existence of solution for degenerate parabolic equations with singular terms, Pure Appl. Math. Quart. 14 (2018), no. 3-4, 591–606.
[8] A. Benkirane, B. El Haji, and M. El Moumni, Strongly nonlinear elliptic problem with measure data in Musielak-Orlicz spaces, Complex Variab. Elliptic Equ. 67 (2022), no. 6, 1447–1469.
[9] A. Benkirane, B. El Haji, and M. El Moumni, On the existence solutions for some nonlinear elliptic problem, Bol. Soc. Paran. Mat. (3s.) 40 (2022), 1–8.
[10] A. Benkirane, N. El Amarty, B. El Haji, and M. El Moumni, Existence of solutions for a class of nonlinear elliptic problems with measure data in the setting of Musielak–Orlicz–Sobolev spaces, J. Elliptic Parabol. Equ. 9 (2023), 647–672.
[11] L. Boccardo, Some nonlinear Dirichlet problems in L1 involving lower order terms in divergence form, Prog. Elliptic Parabolic Partial Differ. Equ. 350 (1996), 43–57.
[12] Y. Chen, S. Levine, and M. Rao, Variable exponent, linear growth functionals in image restoration SIAM J. Appl. Math. 66 (2006), 1383–1406.
[13] J. Droniou and A. Prignet, Equivalence between entropy and renormalized solutions for parabolic equations with smooth measure data, NoDEA Nonlinear Differ. Equ. Appl. 14 (2007) no. 1-2, 181–205.
[14] B. El Haji and M. El Moumni, and A. Talha, Entropy solutions for nonlinear parabolic equations in Musielak Orlicz spaces without Delta2-conditions, Gulf J. Math. 9 (2020), Issue 1, 1–26.
[15] B. El Haji and M. El Moumni, Entropy solutions of nonlinear elliptic equations with L1-data and without strict monotonicity conditions in weighted Orlicz-Sobolev spaces, J. Nonlinear Funct. Anal. 2021 (2021), Article ID 8, 1–17.
[16] B. El Haji, M. El Moumni, and K. Kouhaila, On a nonlinear elliptic problems having large monotonicity with L1-data in weighted Orlicz-Sobolev spaces, Moroccan J. Pure Appl. Anal. 5 (2021), 104–116.
[17] B. El Haji and M. El Moumni, and K. Kouhaila, Existence of entropy solutions for nonlinear elliptic problem having large monotonicity in weighted Orlicz-Sobolev spaces, LE Math. 76 (2021), no. 1, 37–61.
[18] B. El Haji, M. El Moumni, and A. Talha, Entropy Solutions of Nonlinear Parabolic Equations in Musielak Framework Without Sign Condition and L1-Data Asian J. Math. Appl. 2021 (2021), Article ID ama0575.
[19] N. El Amarty, B. El Haji and M. El Moumni, Entropy solutions for unilateral parabolic problems with L1-data in Musielak-Orlicz-Sobolev spaces, Palestine J. Math. 11 (2022), no. 1, 504–523.
[20] N. El Amarty, B. El Haji, and M. El Moumni, Existence of renormalized solution for nonlinear elliptic boundary value problem without Δ2-condition, SeMA 77 (2020), 389–414.
[21] I. Fragal`a, F. Gazzola, and B. Kawohl, Existence and nonexistence results for anisotropic quasilinear elliptic equations, Ann. Inst. H. Poincare Anal. Non Lineaire 21 (2004), 715–734.
[22] L.F.O. Faria, O.H. Miyagaki, D. Motreanub, and M. Tanaka, Existence results for nonlinear elliptic equations with Leray-Lions operator and dependence on the gradient, Nonlinear Anal. 96 (2014), 154–166.
[23] J.-P. Gossez and V. Mustonen, Variational inequalities in Orlicz-Sobolev spaces, Nonlinear Anal. 11 (1987), no. 3, 379–392.
[24] E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer-Verlag, Berlin Heidelberg New York, 1965.
[25] M. Mihailescu, P. Pucci, and V. Radulescu, Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl. 340 (2008), 687–698.
[26] M. Troisi, Teoremi di inclusione per spazi di Sobolev non isotropi, Ricerche Mat. 18 (1969), 3–24.
[27] F. Petitta, A.C. Ponce, and A. Porretta, Diffuse measures and nonlinear parabolic equations, J. Evol. Equ. 11 (2011), no. 4, 861–905.
[28] F. Petitta, Asymptotic behavior of solutions for parabolic operators of Leray-Lions type and measure data, Adv. Differ. Equ. 12 (2007), no. 8, 867–891.
[29] A. Prignet, Existence and uniqueness of ”entropy”, solutions of parabolic problems with L1 data, Nonlinear Anal. 28 (1997) no. 12, 1943–1954.
[30] A. Porretta and S. Segura de Leon; Nonlinear elliptic equations having a gradient term with natural growth, J. Math. Pures Appl. 85 (2006), no. 3, 465–492.
[31] A. Razani, Nonstandard competing anisotropic (p; q)-Laplacians with convolution, Boundary Value Prob. 2022 (2022), 87.
[32] A. Razani, Entire weak solutions for an anisotropic equation in the Heisenberg group, Proc. Amer. Math. Soc. 151 (2023), no. 11, 47714779.
[33] A. Razani, G.S. Costa, and G. M. Figueiredo, A positive solution for a weighted anisotropic p-Laplace equation involving vanishing potential, Mediterr. J. Math. 21 (2024), no. 2, 59.
[34] A. Razani and G.M. Figueiredo, Existence of infinitely many solutions for an anisotropic equation using genus theory, Math. Meth. Appl. Sci. 45 (2022), no. 12, 7591–7606.
[35] A. Razani and G.M. Figueiredo, Degenerated and competing anisotropic (p; q)-Laplacians with weights, Appl. Anal. 102 (2023), no. 16, 4471–4488.
[36] A. Razani and G.M. Figueiredo, A positive solution for an anisotropic p&q-Laplacian, Discrete Continuous Dyn. Syst. Ser. S 16 (2023), no. 6, 16291643.
[37] A. Razani and G.M. Figueiredo, Positive solutions for a semipositone anisotropic p-Laplacian problem, Boundary Value Prob. 2024 (2024), no. 1, 34.
[38] T. Soltani and A. Razani, Solutions for an anisotropic elliptic problem involving nonlinear terms, Q. Math. 47 (2024), no. 1, 93–112.
[39] W. Rudin, Real and Complex Analysis, 3rd ed., McGraw-Hill, New York, 1974.
[40] V. Zhikov, Averaging of functionals in the calculus of variations and elasticity, Math. USSR Izv. 29 (1987), 33–66
Volume 16, Issue 5
May 2025
Pages 1-11
  • Receive Date: 09 February 2024
  • Revise Date: 18 March 2024
  • Accept Date: 19 March 2024