General 3D-Jensen $\rho$-functional equation and ternary Hom-Jordan derivation

Document Type : Research Paper

Authors

Department of Mathematics, Faculty of Sciences, Urmia University, P. O. Box 165, Urmia, Iran

Abstract

 In this paper, we introduce the concept of ternary Hom-Jordan derivation and solve the new 3D-Jensen $\rho$-functional equations in the sense of ternary Banach algebras. Moreover, we prove its Hyers-Ulam stability using the fixed point method.

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64–66.
[2] M. Eshaghi Gordji, Z. Alizadeh, H. Khodaei, and C. Park, On approximate homomorphisms: A fixed-point approach, Math. Sci. 6 (2012), doi.org/10.1186/2251-7456-6-59.
[3] M. Eshaghi Gordji, S. Bazeghi, C. Park, and S. Jang, Ternary Jordan ring derivations on Banach ternary algebras: A fixed point approach, J. Comput. Anal. Appl. 21 (2016), 829–834.
[4] M. Eshaghi Gordji, A. Jabbari, A. Ebadian, and S. Ostadbashi, Automatic continuity of 3-homomorphisms on ternary Banach algebras, Int. J. Geometric Meth. Modern Phys. 10 (2013), 1320013.
[5] M. Eshaghi Gordji, A. Jabbari, and G.H. Kim, Bounded approximate identities in ternary Banach algebras, Abstr. Appl. Anal. 2012 (2012), 1–6.
[6] M. Eshaghi Gordji, H. Khodaei, and Th. M. Rassias, Fixed points and generalized stability for quadratic and quartic mappings in C*-algebras, J. Fixed Point Theory Appl. 17 (2018), 703–715.
[7] P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431–436.
[8] I. Hwang and C. Park, Bihom derivations in Banach algebras, J. Fixed Point Theory Appl. 21 (2019), doi.org/10.1007/s11784-019-0722-y.
[9] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. United States Amer. 27 (1941), 222–224.
[10] A. Jabbari, Cohen’s factorization theorem for ternary Banach algebras, Math. Anal. Contemp. Appl. 1 (2019), no. 1, 62–66.
[11] S. Jahedi and V. Keshavarz, Approximate generalized additive-quadratic functional equations on ternary Banach algebras, J. Math. Exten. 16 (2022), no.10, 1–11.
[12] S. Jahedi, V. Keshavarz, C. Park, and S. Yun, Stability of ternary Jordan bi-derivations on C*-ternary algebras for bi-Jensen functional equation, J. Comput. Anal. Appl. 26 (2019), 140–145.
[13] R. Kerner, Ternary algebraic structures and their applications in physics, Pierre Marie Curie University, Paris, Proc. BTLP, 23rd Int. Conf. Group Theor. Meth. Phys., Dubna, Russia, 2000.
[14] V. Keshavarz, S. Jahedi, and M. Eshaghi Gordji, Ulam-Hyers stability of C*-ternary 3-Jordan derivations, South East Asian Bull. Math. 45 (2021), 55–64.  
[15] B. Margolis and J.B. Diaz, A fixed point theorem of the alternative for contractions on the generalized complete metric space, Bull. Amer. Math. Soc. 126 (1968), 305–309.
[16] Y. Nambu, Generalized Hamiltonian mechanics, Phys. Rev. 7 (1973), 2405–2412.
[17] C. Park, Homomorphisms between Poisson JC*-algebras, Bull. Braz. Math. Soc. 36 (2005), 79–97.
[18] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300.
[19] F. Skof, Proprieta locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983), 113–129.
[20] S.M. Ulam, Problems in Modern Mathematics, Chapter VI, Science ed. Wiley, New York, 1940.
[21] H. Zettl, A characterization of ternary rings of operators, Adv. Math. 48 (1983), 117–143.
Volume 16, Issue 3
March 2025
Pages 315-322
  • Receive Date: 19 November 2022
  • Revise Date: 07 January 2023
  • Accept Date: 24 February 2023