[1] M.A. Alghamdi and E. Karapinar, G−β−ψ-contractive type mappings in G-metric spaces, Fixed Point Theory Appl. 2013 (2013), 123.
[2] M.A. Alghamdi and E. Karapinar, G−β−ψ contractive-type mappings and related fixed point theorems, J. Inequal. Appl. 2013 (2013), 70.
[3] A.H. Ansari, S. Changdok, N. Hussain, Z. Mustafa, and M.M. M. Jaradat, Some common fixed point theorems for weakly α-admissible pairs in G-metric spaces with auxiliary functions, J. Math. Anal. 8 (2017), no. 3, 80–107.
[4] A.H. Ansari, J.M. Kumar, and N. Saleem, Inverse-C-class function on weak semi compatibility and fixed point theorems for expansive mappings in G-metric spaces, Math. Moravica 24 (2020), no. 1, 93–108.
[5] M. Aslantas, H. Sahin, and I. Altun, Best proximity point theorems for cyclic p−contractions with some consequences and applications, Nonlinear Anal.: Model. Control 26 (2021), no. 1, 113–129.
[6] M. Aslantas, H. Sahin, and D. Turkoglu, Some Caristi type fixed point theorems, J. Anal. 29 (2021), no. 1, 89–103.
[7] I. Altun, M. Aslantas, and H. Sahin, Best proximity point results for p−proximal contractions, Acta Math. Hungar. 162 (2020), no. 2, 393–402.
[8] S.H. Bonab, R. Abazari, A. Bagheri Vakilabad, and H. Hosseinzadeh, Generalized metric spaces endowed with vector-valued metrics and matrix equations by tripled fixed point theorems, J. Inequal. Appl. 2020 (2020), 204.
[9] S. H. Bonab, R. Abazari, A. Bagheri, and H. Hosseinzadeh, Coupled fixed point theorems on G−metric spaces via α−series, Glob. Anal. Discrete Math. 6 (2021), no. 1, 1–12.
[10] P. Debnath, N. Konwar, and S. Radenovic, Metric Fixed Point Theory: Applications in Science, Engineering and Behavioural Sciences, Springer International Publishing, 2021.
[11] Y. Errai, E.M. Marhrani, and M. Aamri, Some remarks on fixed point theorems for interpolative Kannan contraction, J. Funct. Spaces 2020 (2020), Article ID 2075920, 7 pages.
[12] Y.U. Gaba, M. Aphane, and H. Aydi, Interpolative Kannan contractions in T0-quasi-metric spaces, J. Math. 2021 (2021), Article ID 6685638, 5 pages.
[13] H. Hosseinzadeh, S.H. Bonab, K.A. Sefidab, Some common fixed point theorems for four mapping in generalized metric spaces, Thai J. Math. 20 (2022), no. 1, 425–437.
[14] N. Hussain, E. Karapinar, P. Salimi, and P. Vetro, Fixed point results for Gm-Mier-Keeler contractive and G−(α, ψ)-Mier-Keeler contractive mappings, Fixed Point Theory Appl. 2013 (2013), 34.
[15] N. Hussain, V. Parvaneh, and F. Golkarmanesh, Coupled and tripled coincidence point results under (F, g)-invariant sets in Gb-metric spaces and G − α-admissible mappings, Math. Sci. 9 (2015), no. 1, 11–26.
[16] N. Hussain, V. Parvaneh, and S.J. Hoseini Ghoncheh, Generalised contractive mappings and weakly α-admissible pairs in G-metric spaces, Sci. World J. 2014 (2014), Article ID 941086, 15 pages.
[17] E. Karapinar, Revisiting the Kannan type contractions via interpolation, Adv. Theory Nonlinear Anal. Appl. 2 (2018), no. 2, 85–87.
[18] E. Karapinar, R. Agarwal and H. Aydi, Interpolative Reich-Rus-Ciric type contractions on partial metric spaces, Mathematics 6 (2018), no. 11, 256.
[19] E. Karapinar, O. Alqahtani, and H. Aydi, On interpolative Hardy-Rogers type contractions, Symmetry 11 (2018), no. 1, 8.
[20] E. Karapinar, P. Kumam, and P. Salimi, On α-ψ-Meir-Keeler contractive mappings, Fixed Point Theory Appl. 2013 (2013), 94.
[21] B. Khomdram, Y. Rohen, Y. Mahendra Singh, and M. Saeed Khan, Fixed point theorems of generalised S-β-ψ-contractive type mappings, Math. Moravica 22 (2018), no. 1, 81–92.
[22] M.A. Kutbi, N. Hussain, J.R. Roshan, and V. Parvaneh, Coupled and Tripled Coincidence Point Results with Application to Fredholm Integral Equations, Abstr. Appl. Anal. 2014 (2014), Article ID 568718, 18 pages.
[23] N. Mlaiki, A. Mukheimer, Y. Rohen, N. Souayah, and T. Abdeljawad, Fixed point theorems for α-ψ-contractive mapping in Sb-metric spaces, J. Math. Anal. 8 (2017), no. 5, 40–46.
[24] Z. Mustafa, A new structure for generalized metric spaces: With applications to fixed point theory, PhD Thesis, the University of Newcastle, Australia, 2005.
[25] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2006), no. 2, 289–297.
[26] Z. Mustafa, H. Obiedat, and F. Awawdeh, Some fixed point theorem for mapping on complete G-metric spaces, Fixed Point Theory Appl. 2008 (2008), Article ID 189870, 12 pages.
[27] Z. Mustafa, W. Shatanawi, and M. Bataineh, Existence of fixed point results in G-metric spaces, Int. J. Math. Math. Sci. 2009 (2009), Article ID 283028, 10 pages.
[28] Z. Mustafa and H. Obiedat, A fixed point theorem of Reich in G-metric spaces, CUBO 12 (2010), no. 1, 83–93.
[29] S. Phiangsungnoen, W. Sintunavarat, and P. Kumam, Fuzzy fixed point theorems for fuzzy mappings via β-admissible with applications, Fixed Point Theory Appl. 2014 (2014), 190.
[30] H. Sahin, M. Aslantas, and I. Altun, Feng-Liu type approach to best proximity point results for multivalued mappings, J. Fixed Point Theory Appl. 22 (2020), no. 1, 11.
[31] N. Saleem, M. Abbas, and Z. Raza, Fixed fuzzy point results of generalized Suzuki type F-contraction mappings in ordered metric spaces, Georg. Math. J. 27 (2020), no. 2, 307–320.
[32] N. Saleem, I. Habib, and M.D.L. Sen, Some new results on coincidence points for multivalued Suzuki-type mappings in fairly complete spaces, Computation 8 (2020), no. 1, 17.
[33] N. Saleem, T. Iqbal, B. Iqbal, and S. Radenovic, Coincidence and fixed points of multivalued F-contractions in generalized metric space with application, J. Fixed Point Theory Appl. 22 (2020), no. 4, 1–24.
[34] B. Samet, C. Vetro, and P. Vetro, Fixed point theorems for α−ψ-contractive type mappings, Nonlinear Anal. 75 (2012), 2154–2165.
[35] I. Yildirim, Fixed point results for interpolative type contractions via Mann iteration process, J. Adv. Math. Stud. 15 (2022), no. 1, 35–45.
[36] I. Yildirim, On extended interpolative single and multivalued F−contractions, Turk. J. Math. 46 (2022), 688–698.
[37] M. Zhou, X.-L. Liu, and S. Radenovic, S-γ-ϕ-φ-contractive type mappings in S-metric spaces, J. Nonlinear Sci. Appl. 10 (2017), 1613–1639.