[1] M.R. Alfuraidan and M.A. Khamsi, Graphical Ekeland’s principle for equilibrium problems, Proc. Amer. Math. Soc. Ser B. 9 (2022), 33–40
[2] M. Bianchi, G. Kassay, and R. Pini, Existence of equilibria via Ekeland’s principle, J. Math. Anal. 305 (2005), 502–512.
[3] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), 123–145.
[4] M. Castellani and G. Massimiliano, Ekeland’s principle for cyclically antimonotone equilibrium problems, Nonlinear Anal.: Real World Appl. 32 (2016), 213–228.
[5] J. Cotrina, M. Thera, and J. Zuniga, An existence result for quasi-equilibrium problems via Ekeland’s variational principle, J. Optim. Theory Appl. 187 (2020), 336–355.
[6] I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324–353.
[7] K. Fan, A minimax inequality and applications, Inequalities III (Proc. Third Sympos., Univ. California, Los Angeles, Calif, 1969; dedicated to the memory of Theodore S. Motzkin), 1972, pp. 103–113.
[8] A.P. Farajzadeh, S. Plubtieng, and A. Hoseinpour, A generalization of Ekeland variational principle by using the τ-distance with its applications, J. Inequal. Appl. 2017 (2017), 181.
[9] Y. Feng, J. Xie, and B. Wu, A new equilibrium version of Ekeland variational principle and its applications, Axioms 11 (2022), no. 2, 68.
[10] O. Kada, T. Suzuki, and W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Jpn. 44 (1996), 381–391.
[11] L. Muu and W. Oettli, Convergence of an adaptive penalty scheme for finding constrained equilibria, Nonlinear Anal. Theory Meth. Appl. 18 (1992), 1159–1166.
[12] T. Suzuki, Generalized distance and existence theorems in complete metric spaces, J. Math. Anal. Appl. 253 (2001), 440–458.
[13] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, 2002.
[14] D. Tataru, Viscosity solutions of Hamilton-Jacobi equations with unbounded nonlinear terms, J. Math. Anal. Appl. 163 (1992), 345–392.
[15] M. Thera, Old and new results on equilibrium and quasi-equilibrium problems, Variation. Anal. Optim. Webinars, 2020, 1–46.
[16] J. von Neumann, Zur theorie der gesellschaftsspiele, Math. Ann. 100 (1928), 295–320.