[1] A. Azzalini, A class of distributions which includes the normal ones, Scand. J. Statist. 12 (1985), 171–178.
[2] A. Azzalini and A.D. Valle, The multivariate skew-normal distribution, Biometrika 83 (1996), no. 2, 715–726.
[3] C.C. Aggarwal and C.K. Reddy, Data Clustering, Algorithms and Applications, Chapman and Hall/CRC, 2014.
[4] J. Bai and S. Ng, Determining the number of factors in approximate factor models, Econometrica 70 (2002), no. 1, 191–221.
[5] M.A. Benjamin, R.A. Rigby, and D.M. Stasinopoulos, Generalized autoregressive moving average models, J. Amer. Statist. Assoc. 98 (2003), no. 461, 214–223.
[6] L. Catania, Dynamic adaptive mixture models, University of Rome Tor Vergata, arXiv preprint arXiv:1603.01308, 2016.
[7] D. Creal, S. Koopman, and A. Lucas, Generalized autoregressive score models with applications, J. Appl. Economet. 28, (2013) no. 5, 777–795.
[8] D. Creal, B. Schwaab, S.J. Koopman, and A. Lucas, An observation-driven mixed measurement dynamic factor model with application to credit risk, Rev. Econ. Statist. 96 (2014), no. 5, 898–915.
[9] D.L. Davies and D.W. Bouldin, A cluster separation measure, IEEE Trans. Pattern Anal. Machine Intell. 2 (1979), 224–227.
[10] R.C. De Amorim and C. Hennig, Recovering the number of clusters in data sets with noise features using feature rescaling factors, Inf. Sci. 324 (2015), no. 10, 126–145.
[11] A.P. Dempster, N.M. Laird, and D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, J. Royal Statist. Soc.: Ser. B 39 (1977), no. 1, 1–22.
[12] S. Fruehwirth-Schnatter and S. Kaufmann, Model-based clustering of multiple time series, J. Bus. Econ. Statist. 26 (2008), 78–89.
[13] A. Hajrajabi and M. Maleki, Nonlinear semiparametric autoregressive model with finite mixtures of scale mixtures of skew normal innovations, J. Appl. Statist. 46 (2019), no. 11, 2010–2029.
[14] A.C. Harvey, Dynamic Models for Volatility and Heavy Tails, with Applications to Financial and Economic Time Series, Cambridge University Press, 2013.
[15] C.M. Hurvich and C.-L. Tsai, Regression and time series model selection in small samples, Biometrika 76 (1989), 297–307.
[16] T.I. Lin, J.C. Lee, and W.J. Hsieh, Robust mixture modeling using the skew t distribution, Statist. Comput. 17 (2007), 81—92.
[17] T.I. Lin, J.C. Lee, and S.Y. Yen, Finite mixture modelling using the skew normal distribution, Statist. Sin. 17 (2007), 909–927.
[18] T.I. Lin, Maximum likelihood estimation for multivariate skew normal mixture models, J. Multivar. Anal. 100 (2009), no. 2, 257-265.
[19] A. Maruotti, A. Punzo, and L. Bagnato, Hidden Markov and semi-Markov models with multivariate leptokurtic-normal components for robust modeling of daily returns series, J. Financ. Economet. 17 (2019), no. 1, 91–117.
[20] G. McLachlan and D. Peel, Finite Mixture Models, Wiley, 2000.
[21] D. Peel and G.J. McLachlan, Robust mixture modelling using the t distribution, Statist. Comput. 10 (2000), 339–348.
[22] A. Punzo and A. Maruotti, Clustering multivariate longitudinal observations: The contaminated Gaussian hidden Markov model, J. Comput. Graph. Statist. 25 (2016), no. 4, 1097–1116.
[23] N. Shephard, Generalized linear Autoregressions, Nuffield College, University of Oxford, 1995.
[24] Y. Wang, R.S. Tsay, J. Ledolter, and K.M. Shrestha, Forecasting simultaneously high-dimensional time series: A robust model-based clustering approach, J. Forecast. 32 (2013), no. 8, 673–684.