[1] R.P. Agarwal, M. Meehan, and D. O’Regan, Fixed Point Theory and Applications, Cambridge University Press, Cambridge, 2001.
[2] H.M. Ahmed and M. Alessandra Ragusa, Nonlocal controllability of Sobolev-type conformable fractional stochastic evolution inclusions with Clarke subdifferential, Bull. Malays. Math. Sci. Soc. 45 (2022), no. 6, 3239–3253.
[3] K. Ahrendt and C. Kissler, Green’s function for higher-order boundary value problems involving a nabla Caputo fractional operator, J. Difference Equ. Appl. 25 (2019), no. 6, 788–800.
[4] M. Bohner and A. Peterson, Dynamic Equations on Time Scales, Birkhauser Boston Inc., Boston, MA, 2001.
[5] C. Chen, M. Bohner, and B. Jia, Existence and uniqueness of solutions for nonlinear Caputo fractional difference equations, Turk. J. Math. 44 (2020), no. 3, 857–869.
[6] Y. Gholami and K. Ghanbari, Coupled systems of fractional ∇-difference boundary value problems, Differ. Equ. Appl. 8 (2016), no. 4, 459–470.
[7] C. Goodrich and A.C. Peterson, Discrete Fractional Calculus, Springer, Cham, 2015.
[8] L. Gu, Q. Zhong, and Z. Shao, On multiple positive solutions for singular fractional boundary value problems with Riemann–Stieltjes integrals, J. Funct. Spaces 2023 (2023), 1–7.
[9] A. Ikram, Lyapunov inequalities for nabla Caputo boundary value problems, J. Difference Equ. Appl. 25 (2019), no. 6, 757–775.
[10] J.M. Jonnalagadda, Solutions of fractional nabla difference equations - existence and uniqueness, Opuscula Math. 36 (2016), no. 2, 215–238.
[11] J.M. Jonnalagadda, On two-point Riemann–Liouville type nabla fractional boundary value problems, Adv. Dyn. Syst. Appl. 13 (2018), no. 2, 141–166.
[12] J.M. Jonnalagadda and N.S. Gopal, Green’s function for a discrete fractional boundary value problem, Differ. Equ. Appl. 14 (2022), no. 2, 163–178.
[13] Z. Laadjal, T. Abdeljawad, and F. Jarad, Some results for two classes of two-point local fractional proportional boundary value problems, Filomat 37 (2023), no. 21, 7199–7216.