[1] R. Agarwal, U.P. Sharma, and R.P. Agarwal, Bicomplex Mittag-Leffler function and associated properties, J. Nonlinear Sci. Appl. 15 (2022), no. 1, 48–60.
[2] H. Aydi, E. Karapinar, and V. Rakoccevic, Nonunique fixed point theorems on b-metric spaces via simulation function, Jordan J. Math. Statist. 12 (2019), no. 3, 265–288.
[3] I.A. Bakhtin, The contraction mapping principle in almost metric space, Funct. Anal. 30 (1989), 26–37.
[4] V. Berinde, Generalized contractions in quasi-metric spaces, Sem. Fixed Point Theory, Babes-Bolyai University, Research Sem., 1993, pp. 3–9.
[5] T. Bhaskar and V. Lakshmikantham, Fixed point theory in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006), 1379–1393.
[6] B.S. Choudhury and K.P. Das, A new contraction principle in Menger spaces, Acta Math. Sin. (Engl. Ser.) 24 (2008), 1379–1386.
[7] R. Chaharpashlou and R. Saadati, Ulam–Hyers–Rassias stability for nonlinear ψ-Hilfer stochastic fractional differential equation with uncertainty, Adv. Differ. Equ. 2020 (2020), 339.
[8] R. Chaharpashlou and R. Saadati, Best approximation of a nonlinear fractional Volterra integro-differential equation in matrix MB-space, Adv. Differ. Equ. 2021 (2021), 118.
[9] R. Chaharpashlou, R. Saadati, D. O’Regan, and C. Park, C∗-algebra valued fuzzy normed spaces with application of Hyers–Ulam stability of a random integral equation, Adv. Differ. Equ. 2020 (2020), 326.
[10] L. Ciric, Solving the Banach fixed point principle for nonlinear contractions in probabilistic metric spaces, Nonlinear Anal. 72 (2010), 2009–2018.
[11] L. Ciri´c, D. Mihet, and R. Saadati, ´ Monotone generalized contractions in partially ordered probabilistic metric spaces, Topol. Appl. 156 (2009), 2838–2844.
[12] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inf. Univ. Ostrav. 1 (1993), 5–11.
[13] D. Gopal, M. Abbas, and C. Vetro, Some new fixed point theorems in Menger PM-spaces with application to Volterra type integral equation, Appl. Math. Comput. 232 (2014), 955–967.
[14] O. Hadzic and E. Pap, Fixed Point Theory in Probabilistic Metric Spaces, Kluwer Academic, Dordrecht, 2001.
[15] O. Hadzic and E. Pap, Fixed point theorems for single-valued and multivalued mappings in probabilistic metric space, Atti Sem. Mat. Fiz. Modena 51 (2003), no. 2, 377–395.
[16] F. Hasanvand and M. Khanehgir, Some fixed point theorems in Menger PbM-spaces with an application, Fixed Point Theory Appl. 2015 (2015), 81.
[17] J. Jachymski, On probabilistic ϕ-contractions on Menger spaces, Nonlinear Anal. 73 (2010), 2199–2203.
[18] F. Khojasteh, S. Shukla, and S. Radenovic, A new approach to the study of fixed point theorems via simulation functions, Filomat 29 (2015), no. 6, 1189–1194
[19] W. Kirk and N. Shahzad, Fixed Point Theory in Distance Spaces, Springer, Switzerland, 2014.
[20] D. Mihet, Multivalued generalizations of probabilistic contractions, J. Math. Anal. Appl. 304 (2005), 464–472.
[21] K. Menger, Statistical metrics, Proc. Nat. Acad. Sci. USA. 28 (1942), 535–537.
[22] X. Mu, C. Zhu, and Z. Wu, New multipled common fixed point theorems in Menger PM-spaces, Fixed Point Theory Appl. 2015 (2015), 136.
[23] E.L. Ghasab, H. Majani, M. De la Sen, and G.S. Rad, e-Distance in Menger PGM spaces with an application, Axioms 10 (2021), no. 1, 3.
[24] E.L. Ghasab, H. Majani, E. Karapinar, and G.S. Rad, New fixed point results in F-quasi-metric spaces and an application, Adv. Math. Phys. 2020 (2020), Article ID 9452350, 6 pages.
[25] E.L. Ghasab, H. Majani, and G.S. Rad, Fixed points of set-valued F-contraction operators in quasi-ordered metric spaces with an application to integral equations, J. Siber. Fed. Univ. Math. Phys. 14 (2021), no. 2, 150–158.
[26] P. Long, G. Murugusundaramoorthy, H. Tang, and W. Wang, Subclasses of analytic and bi-univalent functions involving a generalized Mittag-Leffler function based on quasi-subordination, J. Math. Comput. Sci. 26 (2022), no. 4, 379–394.
[27] K. Owais, A. Serkan, and S. Mohd, Fractional calculus formulas for Mathieu-type series and generalized Mittag-Leffler function, J. Math. Comput. Sci. 20 (2020), no. 2, 122–130.
[28] Z. Sadeghi and S.M. Vaezpour, Fixed point theorems for multivalued and single-valued contractive mappings on Menger PM spaces with applications, J. Fixed Point Theory Appl. 20 (2018), no. 3, 114.
[29] H. Rahimi and G. Soleimani Rad, Fixed Point Theory in Various Spaces, Lambert Academic Publishing (LAP), Deutschland, Germany, 2013.
[30] A. Rana Safdar, M. Shahid, and A. Muhammad Mumtaz, A class of fractional integral operators with multi-index Mittag-Leffler k-function and Bessel k-function of first kind, J. Math. Comput. Sci. 22 (2021), no. 3, 266–281.
[31] I.A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, 2001.
[32] G. Soleimani Rad, S. Shukla, and H. Rahimi, Some relations between n-tuple fixed point and fixed point results, Rev. Real Acad. Cien. Exactas F´ıs. Natur. Ser. A. Mate. 109 (2015), 471–481.
[33] B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North-Holland Series in Prob. & Appl. Math. (vol. 5), Amsterdam, 1983.
[34] V.M. Sehgal and A.T. Bharucha-Reid, Fixed point of contraction mappings on PM-spaces, Math. Syst. Theory 6 (1972), 97–102.