[1] H. Almusawa, R. Ghanam, and G. Thompson, Classification of symmetry lie algebras of the canonical geodesic equations of five-dimensional solvable lie algebras, Symmetry 11 (2019), 1354.
[2] E.G. Virga, Variational Theories for Liquid Crystals, Chapman Hall, London, 1994.
[3] G. Baumann, Symmetry Analysis of Differential Equations with Mathematica, Telos/ Springer, New York, NY, USA, 2000.
[4] J.K. Hunter and R. Saxton, Dynamics of director fields, SIAM J. Appl. Math. 51 (1991), 1498–1521.
[5] A.G. Johnpillai and Ch.M. Khalique, Symmetry reductions, exact solutions, and conservation laws of a modified Hunter-Saxton equation, Abstr. Appl. Anal. 2013 (2013), 1–5.
[6] L.V. Ovsiannikov, Group Analysis of Differential Equations, Academic Press, New York, 1982.
[7] M.Ch. Kakuli, W. Sinkala, and Ph. Masemola, Conservation laws and symmetry reductions of the Hunter-Saxton equation via the double reduction method, Math. Comput. Appl. 28 (2023), no. 5, 92.
[8] M. Jafari, A. Zaeim, and A. Tanhaeivash, Symmetry group analysis and conservation laws of the potential modified KdV equation using the scaling method, Int. J. Geom. Meth. Mod. Phys. 19 (2022), no. 7, 2250098.
[9] A. Jhangeer, A. Hussain, M. Junaid-U-Rehman, I. Khan, D. Baleanu, and K. Sooppy Nisar, Lie analysis, conservation laws and travelling wave structures of nonlinear Bogoyavlenskii-Kadomtsev-Petviashvili equation, Results Phys. 19 (2020), 103492.
[10] W. Liu, Y. Zhang, T. Houria, M. Mirzazadeh, M. Ekici, Q. Zhou, A. Biswas, and M. Belic, Interaction properties of solitonic in inhomogeneous optical fibers, Nonlinear Dyn. 95 (2019), no. 1, 557–563.
[11] M. Nadjafikhah and S. Shaban, Computation of symmetry and conservation law for the Camassa-Holm and Hunter-Saxton equation, AUT J. Math. Comput. 4 (2023), no. 2, 113–122.
[12] P.J. Olver, Applications of Lie Groups to Differential Equations, 2nd ed., Springer: New York, NY, USA, 1993.
[13] P.J. Olver and Ph. Rosenau, Group-invariant solutions of differential equations, SIAM J. Appl. Math. 47 (1987), no. 2, 263–278.
[14] W. Sinkala, Ch.M. Kakuli, T. Aziz, and A. Aziz, Double reduction of the Gibbons-Tsarev equation using admitted Lie point symmetries and associated conservation laws, Int. J. Nonlinear Anal. Appl. 13 (2022), no. 2, 713-721.
[15] Sh.-W. Yao, S. Gulsen, M. Sajad Hashemi, M. Inc, and H. Bicer, Periodic Hunter-Saxton equation parametrized by the speed of the Galilean frame: Its new solutions, Nucci’s reduction, first integrals and Lie symmetry reduction, Results Phys. 47 (2023), 106370.