New results on $ f $-statistical convergence of order $ \tilde{\alpha} $ through triple sequences spaces

Document Type : Research Paper

Authors

1 Escuela Ciencias de la Educacion, Universidad Nacional Abierta y a Distancia, Barranquilla, Colombia

2 Department of Mathematics, Faculty of Sciences, Bartin University, 74100 Bartin, Turkey

10.22075/ijnaa.2022.25758.3119

Abstract

In this paper, we define new notions of $ f $-statistical convergence for triple sequences of order $ \tilde{\alpha}$ and strong $ f $-Cesaro summability for triple sequences of order $ \tilde{\alpha} $. Moreover we show the relationship between the spaces $ w_{\tilde{\alpha},0}^{3}(f) $, $ w_{\tilde{\alpha}}^{3}(f) $ and $ w_{\tilde{\alpha},\infty}^{3}(f) $. Additionally, we show some properties of the strong $ f $-Cesaro summability of order $ \tilde{\beta} $. The main purpose of this paper is to examine the concept of $f$-triple statistical convergence of order $\alpha $; where $f$-is an unbounded function and give relations between $f$-triple statistical convergence of order $\alpha $ and strong $f$-Ces\`aro summability for a triple sequence of order $\alpha $.

Keywords

[1] A. Aizpuru, M. C. Listan-Garcia, and F. Rambla-Barreno, Density by moduli and statistical convergence, Quaest. Math. 37 (2014), no. 4, 525–530.
[2] V.K. Bhardwaj and S. Dhawan, f-statistical convergence of order α and strong Cesaro summability of order α˜ with respect to a modulus, J. Inequal. Appl. 332 (2015), 14.
[3] J.S. Connor, The statistical and strong p-Cesaro convergence of sequences, Analysis 8 (1988), no. 2, 47–63.
[4] R. C¸ olak and Y. Altin, Statistical convergence of double sequences of order α˜, J. Funct. Spaces Appl. 5 (2012), 682823.
[5] R. Colak, Statistical convergence of order a, M. Mursaleen, Modern methods in analysis and its applications, Anamaya Pub., New Delhi, 2010, pp. 121–129.
[6] I.A. Demirci and M. Gurdal, Lacunary statistical convergence for sets of triple sequences via Orlicz function, Theory Appl. Math. Comput. Sci. 11 (2021), no. 1, 1–13.
[7] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244.
[8] J.A. Fridy, On statistical convergence, Analysis 5 (1985), 301–313.
[9] A.D. Gadjiev and C. Orhan, Some approximation theorems via statistical convergence, Rocky Mt. J. Math. 32 (2002), no. 1, 129–138.
[10] C. Granados, A generalization of the strongly Cesaro ideal convergence through double sequence spaces, Int. J. Appl. Math. 34 (2021), no. 3, 525–533.
[11] C. Granados, New notions of triple sequences on ideal spaces in metric spaces, Adv. Theory Nonlinear Anal. Appl. 5 (2021), no. 3, 363–368.
[12] C. Granados, Statistical convergence of double sequences in neutrosophic normed spaces, Neutrosophic Sets Syst. 42 (2021), 333–344.
[13] C. Granados and A.K. Das, A generalization of triple statistical convergence in topological groups, Int. J. Appl. Math. 35 (2022), no. 1, 57–62.
[14] C. Granados and A.K. Das, New Tauberian theorems for statistical Ces`aro summability of function of three variables over a locally convex space, Armen. J. Math. 14 (2022), no. 5, 1–15
[15] C. Granados and B.O. Osu, Wijsman and Wijsman regularly triple ideal convergence sequences of sets, Sci. Afr. 15 (2022), e01101.
[16] C. Granados, A generalized of Sλ-I-convergence of complex uncertain double sequences, Ingen. Cien. 17 (2021), no. 34, 53–75.
[17] C. Granados, Convergencia estadistica en medida para sucesiones triples de funciones con valores difusos, Rev. Acad. Colombiana Cien. Exactas Fis. Natur. 45 (2021), no. 177, 1011–1021.
[18] C. Granados and J. Bermudez, I2-localized double sequences in metric spaces, Adv. Math.: Sci. J. 10 (2021), no. 6, 2877–2885.
[19] C. Granados, A.K. Das, and B.O. Osu, Mλm,n,p-statistical convergence for triple sequences, J. Anal. 29 (2021), no. 4, 1–18
[20] M. B. Huban, M. Gu rdal, and H. Bayturk, On asymptotically lacunary statistical equivalent triple sequences via ideals and Orlicz function, Honam Math. J. 43 (2021), no. 2, 343–357.
[21] I.J. Maddox, Statistical convergence in a locally convex space, Math. Proc. Camb. Philos. Soc. 104 (1988), no. 1, 141–145.
[22] I.J. Maddox, Inclusions between FK-spaces and Kuttner’s theorem, Math. Proc. Camb. Philos. Soc. 101 (1987), no. 3, 523–527.
[23] I.J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Camb. Philos. Soc. 100 (1986), 161–166.
[24] H. Nakano, Concave modulars, J. Math. Soc. Jpn. 5 (1953), 29–49.
[25] A. Pringsheim, Zur Ttheorie der zweifach unendlichen Zahlenfolgen, Math. Ann. 53 (1900), 289–321.
[26] E. Rodriguez, C. Granados, and J. Bermudez, A generalized of N¨orlund ideal convergent double sequence spaces, WSEAS Trans. Math. 20 (2021), 562–568.
[27] A. Sahiner, M. Gurdal, and F.K. Duden, Triple sequences and their statistical convergence, Selcuk J. Appl. Math. 8 (2007), no. 2, 49–55.
[28] T. Salat, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139–150.
[29] I.J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959), 361–375.
[30] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), 73–74.
[31] B. Torgut and Y. Altin, f-statistical convergence of double sequences of order α˜, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 90 (2020), 803–808.
[32] B.C. Tripathy and B. Sarma B, Statistically convergent difference double sequence spaces, Acta. Math. Sin (Engl. Ser.) 24 (2008), no. 5, 737–742.
[33] B.C. Tripathy, Statistically convergent double sequences. Tamkang J. Math. 34 (2003), no. 3, 231–237.
[34] B.C. Tripathy and B. Sarma, Vector valued paranormed statistically convergent double sequence spaces, Math. Slovaca 57 (2007), no. 2, 179–188.
[35] B.C. Tripathy and B. Sarma, Vector valued double sequence spaces defined by Orlicz function, Math. Slovaca 59 (2009), no. 6, 767–776.
[36] B.C. Tripathy and R. Goswami, On triple difference sequences of real numbers in probabilistic normed spaces, Proyecciones Jour. Math. 33 (2014), no. 2, 157-174.
[37] B.C. Tripathy and R. Goswami, Vector valued multiple sequences defined by Orlicz functions, Bol. Soc. Paranaense Mate. 33 (2015), no. 1, 67–79.
[38] B.C. Tripathy and R. Goswami, Multiple sequences in probabilistic normed spaces, Afr. Mate. 26 (2015), no. 5-6, 753-760.
[39] B.C. Tripathy and R. Goswami, Fuzzy real valued p-absolutely summable multiple sequences in probabilistic normed spaces, Afr. Mate. 26 (2015), no. 7-8, 1281–1289.
[40] B.C. Tripathy and R. Goswami, Statistically convergent multiple sequences in probabilistic normed spaces, U.P.B. Sci. Bull., Ser. A, 78 (2016), no. 4, 83–94.
[41] A. Zygmund, Trigonometric Series, vol I, II. Cambridge University Press, Cambridge, 1997.

Articles in Press, Corrected Proof
Available Online from 18 March 2025
  • Receive Date: 31 December 2021
  • Revise Date: 27 May 2022
  • Accept Date: 11 June 2022