[1] S. Banach, Sur les op´erations dans les ensembles abstraits et leur application aux ´equations int´egrales, Fundam. Math. 3 (1922) 133–181.
[2] J. A. Bondy, and U. S. R. Murty, Graph theory with applications, American Elsevier Publishing Co., Inc., NewYork, 1976.
[3] F. Bojor, Fixed points of Kannan mappings in metric spaces endowed with a graph, An. S¸tiint¸. Univ. ”Ovidius” Constant¸a Ser. Mat. 20(1) (2012), 31–40
[4] B. C. Dhage, Generalized metric space and mapping with fixed point, Bull. Cal. Math. Soc. 84 (1992) 329-336.
[5] B. C. Dhage, Generalized metric space and topological structure I, An. stiint. Univ. Al.I. Cuza Iasi. Mat(N.S) 46 (2000) 3–24.
[6] B. C. Dhage, On continuity of mappings in D-metric spaces, Bull. Calcutta Math. Soc. 86 (1994) 503-508.
[7] B. C. Dhage, On generalized metric spaces and topological structure II, Pure. Appl. Math. Sci. 40 (1994) 37–41.
[8] S. G¨ahler, 2-metrische Raume und ihre topologische Struktur, Math. Nach. 26(1–4) (1963) 115–148.
[9] S. G¨ahler, Zur geometric 2-metriche raume, Revue Roumaine de Math. Pures Appl. 11 (1966) 665—667.
[10] K. S. Ha, Y. J. Cho and A. White, Strictly convex and strictly 2-convex 2-normed spaces, Math. Japon. 33(3) (1988) 375–384.
[11] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc. 136 (2008) 1359—1373.
[12] Z. Mustafa and B. Sims, Some remarks concerninig D-metric spaces. Proc. Inter. Conf. Fixed Point Theorey and Applications, Valencia (Spain), July (2003), 189–198.
[13] Z. Mustafa, A new structure for generalized metric spaces with applications to fixed point theory, Ph.D. Thesis, The University of Newcastle, Australia, 2005.
[14] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7(2) (2006) 289–297.
[15] Z. Mustafa and H. Obiedat, A fixed point theorem of Reich in G-metric spaces, CUBO 12(1) (2010) 83–93.
[16] S. V. R. Naidu,; K. P. R. Rao and N. Srinivasa Rao, On the concepts of balls in a D-metric space, Int. J. Math. Math. Sci. 1(2005) 133–141.