Let be an abelian group with a metric be a normed space and be a given function. We define difference by the formula for every . Under some assumptions about and , we show that if is Lipschitz, then there exists a cubic function such that is Lipschitz with the same constant. Moreover, we study the approximation of the equality in the Lipschitz norms.
Dashti, M. and Khodaei, H. (2020). A new type of approximation for cubic functional equations in Lipschitz spaces. International Journal of Nonlinear Analysis and Applications, 11(1), 291-300. doi: 10.22075/ijnaa.2020.4277
MLA
Dashti, M. , and Khodaei, H. . "A new type of approximation for cubic functional equations in Lipschitz spaces", International Journal of Nonlinear Analysis and Applications, 11, 1, 2020, 291-300. doi: 10.22075/ijnaa.2020.4277
HARVARD
Dashti, M., Khodaei, H. (2020). 'A new type of approximation for cubic functional equations in Lipschitz spaces', International Journal of Nonlinear Analysis and Applications, 11(1), pp. 291-300. doi: 10.22075/ijnaa.2020.4277
CHICAGO
M. Dashti and H. Khodaei, "A new type of approximation for cubic functional equations in Lipschitz spaces," International Journal of Nonlinear Analysis and Applications, 11 1 (2020): 291-300, doi: 10.22075/ijnaa.2020.4277
VANCOUVER
Dashti, M., Khodaei, H. A new type of approximation for cubic functional equations in Lipschitz spaces. International Journal of Nonlinear Analysis and Applications, 2020; 11(1): 291-300. doi: 10.22075/ijnaa.2020.4277