[1] R. Agarwal, S. Jain and RP. Agarwal, Analytic solution of generalized space time fractional reaction diffusion equation, Fractional Differ. Calc. 7 (2017) 169–184.
[2] R. Bellman, Introduction to matrix analysis, Society for Industrial and Applied Mathematics (SIAM), USA, 1997.
[3] VM. Bulavatsky, Mathematical modeling of fractional differential filtration dynamics based on models of HilferPrabhakar derivatives, Cybern. Syst. Anal. 53(2) (2017) 204–216.
[4] J. Devi, F. Mc Rae and Z. Drici, Variational Lyapunov method for fractional differential equations, Appl. Math. Comput. 64(298) (2012) 2–9.
[5] M. D’Ovidio and F. Polito, Fractional diffusion-telegraph equations and their associated stochastic solutions, Theory Probab. its Appl. 62(4) (2018) 552–574.
[6] MA. Duarte-Mermoud, N. Aguila-Camacho, JA. Gallegos and R. Castro-Linares, Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems, Commun. Nonlinear Sci. Numer. Simulat. 22 (2015) 650–659.
[7] S. Eshaghi and A. Ansari, Autoconvolution equations and generalized Mittag-Leffler functions, Int. J. Ind. Math. 7(4) (2015) 335–341.
[8] S. Eshaghi and A. Ansari, Lyapunov inequality for fractional differential equations with Prabhakar derivative, Math. Inequal. Appl. 19(1) (2016) 349–358.
[9] S. Eshaghi and A. Ansari, Finite fractional Storm-Liouville transforms for generalized fractional derivatives, Iran. J. Sci. Technol. Trans. A Sci. 41(4) (2017) 931–937.
[10] S. Eshaghi, A. Ansari, R. Khoshsiar Ghaziani and M. Ahmadi Darani, Fractional Black-Scholes model with regularized Prabhakar derivative, Publ. de l’Institut Math. 102(116) (2017) 121–132.
[11] S. Eshaghi, A. Ansari and R. Khoshsiar Ghaziani, Lyapunov-type inequality for nonlinear systems with RiemannLiouville fractional derivatives, Novi Sad J. Math. 49(2) (2019) 17–34.
[12] S. Eshaghi, R. Khoshsiar Ghaziani and A. Ansari, Stability and chaos control of regularized Prabhakar fractional dynamical systems without and with delay, Math. Methods Appl. Sci. 42(7) (2019) 2302–2323.
[13] S. Eshaghi, R. Khoshsiar Ghaziani and A. Ansari, Hopf bifurcation, chaos control and synchronization of a chaotic fractional-order system with chaos entanglement function, Math. Comput. Simul. 172(C) (2020) 321–340.
[14] S. Eshaghi, R. Khoshsiar Ghaziani and A. Ansari, Stability and dynamics of neutral and integro-differential regularized Prabhakar fractional differential systems, Comput. Appl. Math. 39(4) (2020) 1–21.
[15] R. Garra and R. Garrappa, The Prabhakar or three parameter Mittag-Leffler function: Theory and application, Commun. Nonlinear Sci. Numer. Simulat. 56 (2018) 314–329.
[16] R. Garra, R. Gorenflo, F. Polito and Z. Tomovski, Hilfer-Prabhakar derivatives and some applications, Appl. Math. Comput. 242 (2014) 576–589.
[17] R. Garrappa, Gr¨unwald-Letnikov operators for fractional relaxation in Havriliak-Negami models, Commun. Nonlinear Sci. Numer. Simul. 38 (2016) 178–191.
[18] R. Garrappa, F. Mainardi and G. Maione, Models of dielectric relaxation based on completely monotone functions, Fract. Calc. Appl. Anal. 19(5) (2016) 1105–1160.
[19] A. Giusti and I. Colombaro, Prabhakar-like fractional viscoelasticity, Commun. Nonlinear Sci. Numer. Simulat. 56 (2018) 138–143.
[20] R. Gorenflo, AA. Kilbas, F. Mainardi and SV. Rogosin, Mittag-Leffler Functions: Related Topics and Applications, Springer Monographs in Mathematics, New York, 2014.
[21] RK. Gupta, BS. Shaktawat and D. Kumar, Certain relation of generalized fractional calculus associated with the generalized Mittag-Leffler function, J. Rajasthan Acad. Phys. Sci. 15(3) (2016) 117–126.
[22] HK. Khalil, Nonlinear Systems, third edition, Prentice Hall, Upper Saddle River, 2002.
[23] R. Hilfer and H. Seybold, Computation of the generalized Mittag-Leffler function and its inverse in the complex plane, Integral Transforms Spec. Funct. 17 (2006) 637–652.
[24] AA. Kilbas, M. Saigo and RK. Saxena, Generalized Mittag-Leffler function and generalized fractional calculus operators, Integral Transforms Spec. Funct. 15(1) (2004) 31–49.
[25] AA. Kilbas, HM. Srivastava and JJ. Trujillo, Theory and Applications of Fractional Differential Equations, NorthHolland Mathematical Studies, 204, Elsevier (North-Holland) Science Publishers, Amsterdam, 2006.
[26] Y. Li, YQ. Chen and I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Appl. Math. Comput. 59 (2010) 1810–1821.
[27] S. Liu, W. Jiang, X. Li and XF Zhou, Lyapunov stability analysis of fractional nonlinear systems, Appl. Math. Lett. 51 (2016) 13–19.
[28] GP. Lu and DWC. Ho, Generalized quadratic stability for continuous-time singular systems with nonlinear perturbation, Trans. Automat. Contr. 51 (2006) 818–823.
[29] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, London: Imperial College Press, 2010.
[30] F. Mainardi and R. Garrappa, On complete monotonicity of the Prabhakar function and non-Debye relaxation in dielectrics, J. Comput. Phys. 293 (2015) 70–80.
[31] SC. Pandey, The Lorenzo-Hartley’s function for fractional calculus and its applications pertaining to fractionalorder modelling of anomalous relaxation in dielectrics, Comput. Appl. Math. 37(3) (2017) 2648–2666.
[32] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
[33] F. Polito and Z. Tomovski, Some properties of Prabhakar-type fractional calculus operators, Fractional Differ. Calc. 6(1) (2016) 73–94.
[34] TR. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J. 19 (1971) 7–15.
[35] HJ. Seybold and R. Hilfer, Numerical results for the generalized Mittag-Leffler function, Fract. Calc. Appl. Anal. 8 (2005) 127–139.
[36] S. Momani and S. Hadid, Lyapunov stability solutions of fractional integrodifferential equations, Int. J. Math. Math. Sci. 47 (2004) 2503–2507.
[37] HM. Srivastava and Z. Tomovski, Fractional calculus with an integral operator containing a generalized MittagLeffler function in the kernel, Appl. Math. Comput. 211 (2009) 198–210.
[38] Z. Tomovski, R. Hilfer and HM. Srivastava, Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions, Fract. Calc. Appl. Anal. 21 (2010) 797–814.
[39] J. Xu, Time-fractional particle deposition in porous media, J. Phys. A Math. Theor. 50(19) (2017) 195002.
[40] F. Zhang, Ch. Li and YQ. Chen, Asymptotical stability of nonlinear differential systems with Caputo derivative, Int. J. Differ. Equ. 2011 (2011) 12 pages.
[41] L. Zhang, J. Li and G. Chen, Extension of Lyapunov second method by fractional calculus, Pure Appl. Math. 3 (2005) 1008–5513.