[1] B. Ahmad and S. Sivasundaram, On four-point nonlocal boundary value problems of nonlinear integro-differential equations of fractional order, Appl. Math. Comput. 217 (2010) 480–487.
[2] H. Baghani, M. Eshaghi Gordji and M. Ramezani, Orthogonal sets: The axiom of choice and proof of a fixed point theorem, J. Fixed Point Theory Appl. 18 (2016) 465–477.
[3] D. Baleanu, S. Z. Nazemi and Sh. Rezapour, Existence and uniqueness of solutions for multi-term nonlinear fractional integro-differential equations, Adv. Differ. Equ. 368 (2013).
[4] M. Eshaghi, M. Ramezani, M. D. L. Sen and Y. J. Cho, On orthogonal sets and Banach’s fxed point theorem, Fixed Point Theory, 18 (2017) 569–578.
[5] M. A. Khamsi, W. M. Kozlowski and S. Reich, Fixed point theory in modular function spaces, Nonlinear Anal. 14 (1990) 935–953.
[6] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier, Amsterdam, 2006.
[7] N. Mizoguchi and W. Takahashi, Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl. 141 (1989) 177-188.
[8] S. B. Nadler, Multivalued contraction mappings, Pac. J. Math. 30 (1969) 475-488.
[9] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
[10] S. Reich, Fixed point of contractive functions, Boll Un Mat Ital. 4 (1972) 26-42.
[11] S. Reich, Some fixed point problems, Rend Lincei-Mat Appl. 57 (1974) 194–198.
[12] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science, Switzerland, 1993.
[13] X. Su and L. Liu, Existence of solution for boundary value problem of nonlinear fractional differential equation. Appl. Math. Chin. Univ. 22 (2007) 291–298.
[14] X. Su and S. Zhang, Solutions to boundary value problems for nonlinear differential equations of fractional order. Electron. J. Differ. Equ. 26 (2009) 1–15.
[15] Ch. Zhai and J. Ren, The unique solution for a fractional q-difference equation with three-point boundary conditions, Indag. Math. 29 (2018) 948–961.