[1] S. Abbasbandy and T. Allahviranloo, Numerical solution of fuzzy differential equation by Runge-Kutta method,
11(1) (2004) 117–129.
[2] S. Abbasbandy, T. Allahviranloo, O. L´opez-Pouso and J. J. Nieto, ´ Numerical methods for fuzzy differential
inclusions, Comput. Math. Appl. 48 (2004) 1633–1641.
[3] T. Allahviranloo and M. Barkhordari Ahmadi, Fuzzy Laplace transforms, Soft Comput. 14, Article number: 235
(2010).
[4] T. Allahviranloo, S. Abbasbandy, N. Ahmady and E. Ahmady, Improved predictor-corrector method for solving
fuzzy initial value problems, Inf. Sci. 179(7) (2009) 945–955.
[5] T. Allahviranloo, S. Abbasbandy, O. Sedaghgatfar and P. Darabi, A new method for solving fuzzy integrodifferential equation under generalized differentiability, Neural Comput. Appl. 21 (2012) 191—196.
[6] T. Allahviranloo, Z. Gouyandeh, A. Armand and A. Hasanoglu, On fuzzy solutions for heat equation based on
generalized Hukuhara differentiability, Fuzzy Sets Syst. 265 (2015) 1–23.
[7] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst. 20 (1986) 87–96.
[8] K. T. Atanassov, More on intuitionistic fuzzy sets, Fuzzy Sets Syst. 33 (1989) 37–46.
[9] K. T. Atanassov and G. Gargov, Interval-valued intuitionistic fuzzy sets, Fuzzy Sets Syst. 3 (1989) 343–349.
[10] K. T. Atanassov, Operators over interval-valued intuitionistic fuzzy sets, Fuzzy Sets Syst. 64 (1994) 159–174.
[11] G. Beliakov, A. Pradera and T. Calvo, Aggregation Functions: A Guide For Practitioners, Heidelberg, Germany:
Springer, 2007.
[12] G. Beliakov, H. Bustince, S. James, T. Calvo and J. Fernandez, Aggregation for Atanassov’s intuitionistic and
interval valued fuzzy sets: The median operator, IEEE Trans. Fuzzy Syst. 20(3) (2012) 487–498.
[13] Y. J. Cho, Th. M. Rassias and R. Saadat, Fuzzy Operator Theory in Mathematical Analysis, Springer, 2018.
[14] G. Deschrijver and E. E Kerre, A generalization of operators on intuitionistic fuzzy sets using triangular norms
and conorms, Notes Intuitionistic Fuzzy Sets, 8(1) (2002) 19–27.
[15] G. Deschrijver, C. Cornelis and E. E. Kerre, On the representation of intuitionistic fuzzy t-norms and t-conorms,
IEEE Trans. Fuzzy Syst. 12(1) (2004) 45–61.
[16] R. Ezzatia, T. Allahviranloo, S. Khezerloo and M. Khezerloo, An approach for ranking of fuzzy numbers, Expert
Syst. Appl. 39(1) (2012) 690–695.
[17] V. L. Gomathi Nayagam, S. Muralikrishnan and G. Sivaraman, Multicriteria decision making method based on
interval-valued intuitionistic fuzzy sets, Expert Syst. Appl. 38(3) (2011) 1464–1467.
[18] M. Goudarzi, S. M. Vaezpour and R. Saadati, On the intuitionistic fuzzy inner product spaces, Chaos, Sol. Fract.
41(3) (2009) 1105–1112.
[19] Z. Gouyandeh, T. Allahviranloo, S. Abbasbandy and A. Armand, A fuzzy solution of heat equation under generalized Hukuhara differentiability by fuzzy Fourier transform, Fuzzy Sets Syst. 309 (2017) 81–97.
[20] M. Grabisch, J. L. Marichal, R. Mesiar and E. Pap, Aggregation functions: Means, Info. Sci. 181(1) (2011) 1–22.
[21] S. B. Hosseini, R. Saadati and M. Amini, Alexandroff theorem in fuzzy metric spaces, Math. Sci. Res. J. 2004.
[22] S. B. Hosseini, D. Oregan and R. Saadati, Some results on intuitionistic fuzzy spaces, Iran. J. Fuzzy Syst. 4(1)
(2007) 53–64.
[23] P. E. Klement and R. Mesiar, Triangular norms, Tatra Mt. Math. Pupl. 13 (1997) 169–193.
[24] P. Liu, Some Hamacher aggregation operators based on the interval-valued intuitionistic fuzzy numbers and their
application to group, Decision Making, 22(1) (2014) 83–97.
[25] X. D. Liu, S. H. Zheng and F. I. Xiong, Entropy and subsethood for general interval-valued intuitionistic fuzzy
sets, in Fuzzy Systems and Knowledge Discovery, Fuzzy Syst. Knowledge Disc. 3613 (2005) 42–52.
[26] A. Mahmoodirad, T. Allahviranloo and S. Niroomand, A new effective solution method for fully intuitionistic
fuzzy transportation problem, Soft Comput. 23 (2019) 4521—4530.
[27] P. Melin, G. E. Martinez and R. Svetkov, Choquet and Sugeno integrals and intuitionistic fuzzy integrals as
aggregation operators, Notes Intuit. Fuzzy Set. 23(1) (2017) 95–99.
[28] E. Pap, Ch. Park and R. Saadati, Additive σ−Random operator inequality and rhom-derivations in fuzzy Banach
algebras, U. P. B. Sci. Bull., Series A, 82(2) (2020) 3–14.
[29] J. H. Park, Y. B. Park and R. Saadati, Some results in intuitionistic fuzzy metric spaces, J. Comput. Anal. Appl.
10(4) (2008) 441–451.
[30] J. Qin and X. Liu, Frank aggregation operators for triangular interval type-2 fuzzy set and its application in
multiple attribute group, J. Appl. Math. 2014 (2014), Article ID 923213, 24 pages.
[31] R. Saadati and M. Vaezpour, Some results on fuzzy Banach spaces, J. Appl. Math. Comput. 17(1) (2005) 475–484.
[32] R. Saadati and J. H. Park, Intuitionistic fuzzy Euclidean normed spaces, Commun. Math. Anal. 1(2) (2006) 85–90.
[33] R. Saadati and J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos, Solit. Fract. 27(2) (2006) 331–344.[34] R. Saadati, Common fixed point theorem in intuitionistic fuzzy metric spaces, Albanian J. Math. 2(4) (2008)
277–282.
[35] R. Saadati, M. Vaezpour and Y. J. Cho, Quicksort algorithm: Application of a fixed point theorem in intuitionistic
fuzzy quasi-metric spaces at a domain of words, J. Comput. Appl. Math. 228(1) (2009) 219–225.
[36] R. Saadati, On the topology of fuzzy metric type spaces, Filomat, 29(1) (2015) 133–141.
[37] S. Salahshour and T. Allahviranloo, Application of fuzzy differential transform method for solving fuzzy Volterra
integral equations, Appl. Math. Model. 37(3) (2013) 1016–1027.
[38] C. Tan and Q. Zhang, Fuzzy multiple attribute decision-making based on interval valued intuitionistic fuzzy sets,
Proc. IEEE Int. Conf. Syst, Man, Cybern, vol. 2, Taipei, Taiwan, 2006, pp. 1404-1407.
[39] J. Q. Wang, K. J. Li and H. Y. Zhang, Interval-valued intuitionistic fuzzy multi-criteria decision-making approach
based on prospect score function, Knowl-Based Syst. 27 (2012) 119–125.
[40] W. Wang and X. Liu, Intuitionistic fuzzy information aggregation using Einstein operations, IEEE Trans. Fuzzy
Syst. 20(5) (2012) 923–938.
[41] W. Z. Wang and X. W. Liu, Intuitionistic fuzzy geometric aggregation operators based on Einstein operations,
Int. J. Intell. Syst. 26 (2011) 1049–1075.
[42] Z. Wang and J. Xu, A fractional programming method for interval-valued intuitionistic fuzzy multi-attribute
decision making, Proc. 49th IEEE Int. Conf. Decision Control, 2010, pp. 636-641.
[43] G. W. Wei and W. D. Yi, Induced interval-valued intuitionistic fuzzy OWG operator, Proc. 5th Int. Conf. Fuzzy
Syst. Knowl. Discovery, 2008, pp. 605-609.
[44] M. M. Xia, Z. S. Xu and B. Zhu, Some issues on intuitionistic fuzzy aggregation operators based on Archimedean
t-conorm and t-norm, Knowl. Based Syst. 31 (2012) 78–88.
[45] Z. S. Xu and R. R. Yager, Intuitionistic and interval-valued intutionistic fuzzy preference relations and their
measures of similarity for the evaluation of agreement within a group, Fuzzy Optim. Decis. Mak. 8 (2009) 123–
139.
[46] L. A. Zadeh, Fuzzy sets, Inf. Cont. 8 (1965) 338–356.