[1] M. Abdoon, Programming first integral method general formula for the solving linear and nonlinear equations,
Appl. Math. 6 (2015) 568.
[2] Al-Amr and O. Mohammed, Exact solutions of the generalized (2+1)-dimensional nonlinear evolution equations
via the modified simple equation method, Comput. Math. Appl. 69(5) (2015) 390–397.
[3] M. Al-Amr, Exact solutions of the generalized (2+ 1)-dimensional nonlinear evolution equations via the modified
simple equation method, Comput. Math. Appl. 5 (2015) 390–397.
[4] A. Aleixo and A. Balantekin, Algebraic construction of coherent states for nonlinear quantum deformed systems,
J. Phys. A: Math. Theor. 16 (2012) 165302.
[5] T. Bo. and G. YI-Tian, On the generalized Tanh method the (2+1)-dimensional breaking soliton equations, Mod.
Phys. Lett. A. 38 (1995) 2937–2941.
[6] B. Buti, V. Galinski, V. Shevchenko, G. Lakhina, B. Tsurutani, B. Goldstein, B. Diamond and M. Medvedev,
Evolution of Nonlinear Alfv´en Waves in Streaming Inhomogeneous Plasmas, Astrophysical J. 523 (1999) 849.
[7] O. Bogoyavlenskii, Breaking solitons in 2+ 1-dimensional integrable equations, Russian Math. Surv. 45(4) (1990).
[8] R. Cherniha and S. Kovalenko, Lie symmetries and reductions of multi-dimensional boundary value problems of
the Stefan type, J. Phys. A: Math. Theo. 44 (2011) 485202.
[9] M. Darvishi and M. Najafi, Some exact solutions of the (2+ 1)-dimensional breaking soliton equation using the
three-wave method, Int. J. Comput. Math. Sci. 6 (2012) 13–16.
[10] T. Ding and C. Li, Ordinary differential equations, Theor. Math. Phys. 137 (1996) 1367–1377.
[11] M. Ekici, D. Duran and A. Sonmezoglu, Constructing of exact solutions to the (2+ 1)-dimensional breaking
soliton equations by the multiple (G’/G)-expansion method, J. Adv. Math. Stud. 1 (2014) 27–30.
[12] L. Faeza, First integral method for constructing new exact solutions of the important nonlinear evolution equations
in physics, Phys. Conf. Ser. 2020.
[13] Y. Guldem and D. Durmus, Solution of the (2+1) donation breaking soliton equation by using two different
methods, J. Eng. Tech. App. Sci. 1 (2016) 13–18.
[14] G. Hami and F. Omer, ¨ Benjamin-Bona-Mahony equation by using the sn-ns method and the tanh-coth method,
Math. Moravica, 1 (2017) 95–103.
[15] T. Kobayashi and K. Toda, The Painlev´e test and reducibility to the canonical forms for higher-dimensional
soliton equations with variable-coefficients, Symmet. Integ. Geom. Meth. Appl. 2 (2006) 063.
[16] A. Lisok, A. Trifonov and A. Shapovalov, The evolution operator of the Hartree-type equation with a quadratic
potential, J. Phys. A: Math. Gen. 37 (2004) 4535.
[17] W. Ma, A. Abdeljabbar and M. GamilAsaad, Wronskian and Grammian solutions to a (3+ 1)-dimensional
generalized KP equation, Appl. Math. Comput. 24 (2011) 10016–10023.
[18] W. Ma and A. Abdeljabbar, A bilinear B¨acklund transformation of a (3 + 1)-dimensional generalized KP equation,
Appl. Math. Lett. 25(10) (2012) 1500–1504.
[19] K. Melike, A. Arzu and B. Ahmet, (2016) Solving space-time fractional differential equations by using modified
simple equation method, Commun. Theor. Phys. 5 (2016) 563–568.[20] M. Mirzazadeh, A couple of solutions to a (3+ 1)-dimensional generalized KP equation with variable coefficients
by extended transformed rational function method, Elect. J. Math. Anal. Appl. 1 (2015) 188–194.
[21] A. Mohamed, First integral method: A general formula for nonlinear fractional Klein-Gordon equation using
advanced computing language, Amer. J. Comput. Math. 5 (2015) 127–134.
[22] S. Mohyud-Din, A. Irshad, N. Ahmed and U. Khan, Exact solutions of (3+ 1)-dimensional generalized KP
equation arising in physics, Results Phys. 7 (2017) 3901–3909.
[23] M. Najafi, S. Arbabi and M. Najafi, New application of sine-cosine method for the generalized (2 + 1)-dimensional
nonlinear evolution equations, Int. J. Adv. Math. Sci. 1 (2013) 45–49.
[24] M. Najafi, M. Najafi and S. Arbabi, New exact solutions for the generalized (2+ 1)-dimensional nonlinear evolution
equations by Tanh-Coth method, Int. J. Modern Theo. Phys. 2 (2013) 79–85.
[25] M. Najafi, M. Najafi and S. Arbabi, New application of (G
0
/G)-expansion method for generalized (2 + 1)-
dimensional nonlinear evolution equations, Int. J. Eng. Math. 5 (2013) Article ID 746910.
[26] V. Orlov and O. Kovalchuk, Research of one class of nonlinear differential equations of third order for mathematical modelling the complex structures, IOP Conf. Ser.: Mater. Sci. Eng. 365 (2018) 042045.
[27] Y. Peng, New types of localized coherent structures in the Bogoyavlenskii-Schiff equation, Int. J. Theor. Phys. 45
(2006) 1779–1783.
[28] A. Pullen, A. Benson and L. Moustakas, Nonlinear evolution of dark matter subhalos and applications to warm
dark matter, Astrophysical J. 792(1) (2014) 24.
[29] A. Seadawy, N. Cheemaa and A. Biswas, Optical dromions and domain walls in (2+ 1)-dimensional coupled
system, Optik, 227 (2020) 165669.
[30] Y. Tang, S. Tao, M. Zhou and Q. Guan, Interaction solutions between lump and other solitons of two classes of
nonlinear evolution equations, Nonlinear Dyn. 89(1) (2017) 429–442 .
[31] M. Tarig and B. Jafar, (2011) Homotopy perturbation method and Elzaki transform for solving system of nonlinear
partial differential equations, Worl. Appl. Sci. J. 7 (2011) 944–948.
[32] A. Wazwaz, Integrable (2+ 1)-dimensional and (3+ 1)-dimensional breaking soliton equations, Physica Scripta,
81 (2010) 035005.
[33] W. X. Ma, Abundant lumps and their interaction solutions of (3+1)-dimensional linear PDEs, J. Geom. Phys.
133 (2018) 10–16 .
[34] Y. Yıldırım and E. Ya¸sar, A (2+ 1)-dimensional breaking soliton equation: solutions and conservation laws,
Chaos, Solitons Fract. 107 (2018) 146–155.
[35] G. Yildiz and D. Daghan, Solution of the (2+ 1) dimensional breaking Soliton equation by using two different
methods, J. Engin. Tech. Appl. Sci. 1 (2016) 13–18.
[36] V. Zakharov, Collapse of Langmuir waves, Sov. Phys. JETP. 5 (1972) 908–914.
[37] Y. Zhou, M. Wang and Y. Wang, Periodic wave solutions to a coupled KdV equations with variable coefficients,
Phys. Lett. A. 1 (2003) 31–36.