[1] S. U. S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, ASME-Publications-Fed. 231 (1995)
99–106.
[2] J. Buongiorno, Convective transport in nanofluids, J. Heat Trans. 128 (3) (2006) 240–250.
[3] A. V. Kuznetsov and D. A. Nield, Natural convective boundary-layer flow of a nanofluid past a vertical plate, Int.
J. Thermal Sci. 49(2) (2010) 243–247.
[4] W. A. Khan and I. Pop, Flow and heat transfer over a continuously moving at plate in a porous medium, J. Heat
Trans. 133(5) (2011) 054501.
[5] L. Zheng, C. Zhang, X. Zhang, and J. Zhang, Flow and radiation heat transfer of a nanofluid over a stretching
sheet with velocity slip and temperature jump in porous medium, J. Franklin Inst. 350(5) (2013) 990–1007.
[6] H. S. Takhar, R. S. R. Gorla, and V. M. Soundalgekar, Short communication radiation effects on MHD free
convection flow of a gas past a semi-infinite vertical plate, Int. J. Numerical Meth. Heat Fluid Flow, 6(2) (1996)
77–83.
[7] A. Y. Ghaly and M. E. E. Elsayed, Radiation effect on MHD free-convection flow of a gas at a stretching surface
with a uniform free stream, J. Appl. Math. 2(2) (2002) 93-103.
[8] S. P. A. Devi and M. Kayalvizhi, Analytical solution of MHD flow with radiation over a stretching sheet embedded
in a porous medium, Int. J. Appl. Math. Mech. 6(7) (2010) 82-106.
[9] O. D. Makinde, W. A. Khan, and Z. H. Khan. Buoyancy effects on MHD stagnation point flow and heat transfer
of a nanofluid past a convectively heated stretching/shrinking sheet, Int. J. Heat Mass Trans.62 (2013) 526–533.
[10] H. I. Andersson, MHD flow of a viscoelastic fluid past a stretching surface, Acta Mech. 5(1) (1992) 227–230.
[11] M. I. Char, Heat and mass transfer in a hydromagnetic flow of the viscoelastic fluid over a stretching sheet, J.
Math. Anal. Appl. 186(3) (1994) 674–689.
[12] H. Markovitz and B. D. Coleman, Incompressible second-order fluids, Adv. Appl. Mech. 8 (1964) 69–101.
[13] K. R. Rajagopal, A note on unsteady unidirectional flows of a non-newtonian fluid, Int. J. Non-Linear Mech.
17(5-6) (1982) 369–373.
[14] K. R. Rajagopal and A. S. Gupta. An exact solution for the flow of a non-newtonian fluid past an infinite porous
plate, Mecc. 19(2) (1984) 158–160.
[15] A. M. Siddiqui, P. N. Kaloni and O. P. Chandna, Hodograph transformation methods in non-Newtonian fluids, J.
Engin. Math. 19(3) (1985) 203–216.
[16] A. M. Siddiqui and P. N. Kaloni, Certain inverse solutions of a non-newtonian fluid, Int. J. Non-linear Mech.
21(6) (1986) 459–473.
[17] O. P. Chandna and P. V. Nguyen, Hodograph method in non-Newtonian MHD transverse fluid flows, J. Engin.
Math. 23(2) (1989) 119–139.
[18] P. V. Nguyen and O. P. Chandna, Non-Newtonian MHD orthogonal steady plane fluid flows, Int. J. Engin. Sci.
30(4) (1992) 443–453.
[19] R. Cortell, Heat transfer in a fluid through a porous medium over a permeable stretching surface with thermal
radiation and variable thermal conductivity, Canadian J. Chemical Engin. 90(5) (2012) 1347–1355.[20] D. P. Bhatta, S. R. Mishra and J. K. Dash, Unsteady squeezing flow of water-based nanofluid between two parallel
disks with slip effects: Analytical approach, Heat Trans. Asian Res. 48(5) (2019) 1575–1594.
[21] M. Farooq, S. Ahmad, M. Javed and A. Anjum, Melting heat transfer in squeezed nanofluid flow through Darcy
Forchheimer medium, J. Heat Trans. 141(1) (2019) 012402.
[22] M. Gholinia, K. Hosseinzadeh, H. Mehrzadi, D. Ganji and A. Ranjbar, Investigation of MHD Eyring Powell fluid
flow over a rotating disk under effect of homogeneous-heterogeneous reactions, Case Stud. Thermal Engin. 13
(2019) 100356.
[23] G.Narender, G.Sreedhar Sarma and K.Govardhan, Heat and Mass Transfer of a nanofluid over a stretching sheet
with viscous dissipation effect, J. Heat Mass Trans. Res. 6(2) (2019) 117–124.
[24] W. Ibrahim and R. U. Haq. Magnetohydrodynamic (MHD) stagnation point flow of nanofluid past a stretching
sheet with convective boundary condition, J. Brazilian Soc. Mech. Sci. Engin. 38(4) (2016) 1155–1164.