$C^*$-metric spaces

Document Type : Research Paper

Authors

1 Department of Mathematics,Faculty of Science,Science and Research Branch Islamic Azad University,Tehran , Iran.

2 Department of Pure Mathematics, Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad

3 Department of Mathematics, Faculty of Science, Science and Research Branch Islamic Azad University, Tehran, Iran

Abstract

‎The purpose of this article is to introduce the notion of an $\mathfrak{A}$-meter‎, ‎as an operator-valued distance mapping on a set $X$ and investigating the theory of $\mathfrak{A}$-metric spaces‎, ‎where $\mathfrak{A}$ is a noncommutative $C^*$-algebra‎. ‎We demonstrate that each metric space may be seen as an $\mathfrak{A}$-metric space and that every $\mathfrak{A}$-metric space $(X,\delta)$ can be regarded as a topological space $(X,\tau_{\delta})$‎.

Keywords

[1] J. Dixmier, C*-Algebras, Translated from the French by Francis Jellett, North-Holland Mathematical Library,
Vol. 15. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.
[2] G. Dolinar and J. Marovt,Star partial order on B(H), Linear Algebra Appl. 434(1) (2011) 319–326.
[3] K. Janich,Topology, Springer-Verlag, 1984.
[4] J.L. Kelley, General Topology, Van Nostrand Company, Inc., Toronto-New York-London, 1955.
[5] K. Menger,Probabilistic theories of relations, Proc. Nat. Acad. Sci. USA. 37 (1951) 178–180.
[6] K. Menger,Probabilistic geometry, Proc. Nat. Acad. Sci. USA. 37 (1951) 226–229.
[7] M. Mirzavaziri,Function valued metric space, Surv. Math. Appl. 5 (2010) 321–332.
[8] M.S. Moslehian, On full Hilbert C*-modules, Bull. Malays. Math. Sci. Soc. 24 (2001) 45–47.
[9] G.J. Murph,C

-Algebras and Operator Theory, Academic Press, Inc., Boston, MA, 1990.
[10] G.K. Pedersen, Analysis Now, Springer Verlag, 1988.
[11] B. Schweizer and A. Sklar, Probabilistic metric space, North-Holland Series in Probability and Applied Mathematics. North-Holland Publishing Co., New York, (1983).
Volume 12, Issue 2
November 2021
Pages 1991-1996
  • Receive Date: 10 July 2020
  • Accept Date: 08 December 2020