[1] A. S. Ackleh and P. Zhang, Competitive exclusion in a discrete stage-structured two species model, Math. Model.
Nat. Phenom. 4 (2009) 156-–175.
[2] D.C. Alberto and H. Onesimo The maximum principle for discrete-time control systems and applications to
dynamic games, J. Math. Anal. Appl. 475 (2019) 253–277.
[3] W.G. Aiello and H.I. Freedman A time-delay model of single-species growth with stage structure, Math. Biosci.
101 (1990) 139-153.
[4] C. Clark Mathematical Bioeconomics: The Optimal Management of Renewable Resources, 2nd edition, Wiley,
2005.
[5] J. Cui, L. Chen and W. Wang The effect of dispersal on population growth with stage-structure, Comput. Math.
Appl. 39 (2000) 91–102.
[6] J.M. Cushing An Introduction to Structured Population Dynamics, CBMSNSF Regional Conf. Ser. Appl. Math.
71, SIAM, Philadelphia, 1998.
[7] S.N. Elaydi Discrete Chaos with Applications in Science and Engineering, Chapman and Hall/CRC, 1999.
[8] S.A. Gourley and Y. Kuang A stage structured predator-prey model and its dependence on through stage delay
and death rate, J. Math. Biol. 49 (2004) 188–200.
[9] Ghosoon M. and Sadiq Al-Nassir Dynamics and an Optimal Policy for A Discrete Time System with Ricker
Growth, Iraqi J. Sci. 60(1) (2019) 135–142.
[10] E. Jung, S. Lenhart, V. Protopopescu and C.F. Babbs, Optimal control theory applied to a difference equation
model for cardiopulmonary resuscitation, Math. Mod. Meth. Appl. Sci. 15 (2005) 1519–1531.
[11] S. Lenhart and J. Workman, Optimal Control Applied to Biological Models, Chapman Hall/CRC,Boca Raton,
2007.
[12] V. Leis, D. Vrabie and V.L. Symos, Optimal Control, Wiley-Interscience, New York, 1986.
[13] R.S. Mustafa and Orlando Merino, Discrete Dynamical Systems and Difference Equations with Mathematica,
Chapman, and Hall/CRC, 2002.
[14] D. Kamel Dynamics in a discrete-time three dimensional cancer system, Int. J. Appl. Math. 49(4) (2019) IJAM49-4-31.
[15] O. K. Shalsh and S. Al-Nassir, Dynamics and optimal Harvesting strategy for biological models with Beverton
Holt growth, Iraqi J. Sci. 2020 (Special Issue) 223–232.
[16] L. S. Pontryagin V. S. Boltyanskii R. V. Gamkrelidze and E. Mishchenko The Mathematical Theory of Optimal
Processes, Wiley-Inter science, New York, 1962.
[17] S.P. Sethi and G. L. Thompson, Optimal Control Theory: Applications to Management Science and Economics,
2nd edition, Springer 2009.
[18] S. Tang, and L. Chen, The effect of seasonal harvesting on stage-structured population models, J. Math. Biol. 48
(2004) 357-374.
[19] S. Tang, R.A. Cheke and Y. Xiao, Optimal impulsive harvesting on non-autonomous Beverton-Holt difference
equations, Nonlinear Anal. 65 (2006) 2311–2341.
[20] O. Tahvonen Economics of harvesting age-structured fish populations, J. Envir. Econ. Manag. 58(3) (2009) 281–
299.
[21] W.D. Wang, and L.S. Chen, A predator-prey system with stage-structure for predator, Comput. Math. Appl. 33
(1997) 83–91.
[22] D. Wandi, S. Lenhart and H. Behncke, Discrete time optimal harvesting of fish populations with age structure,
Lett. Biomath. Int. J. 2 (2014) 193–207.
[23] X.A. Zhang, L.S. Chen and A.U. Neumann, The stage-structured predator-prey model and optimal harvesting
policy, Math. Biosci. 168 (2000) 201–210.