Some results on fuzzy soft sesquilinear functional

Document Type : Research Paper


1 Mustansiriyah University, College of Education, Baghdad-Iraq

2 Thi-Qar University, College of Education of Pure Sciences, Iraq


In this paper, we study and discussion new kinds of Sesquilinear functional which is fuzzy soft Sesquilinear functional and given some properties with characterization and also theories related on fuzzy soft Sesquilinear functional have been given. Additionally, we present the relationship between this kind and other kinds


[1] S. Bayramov and C. Gunduz, Soft locally compact spaces and soft paracompact spaces, J. Math. Syst. 3 (2013)
[2] T. Beaula and M. M. Priyanga, A new notion for fuzzy soft normed linear space, Int. J. Fuzzy Math. Arch. 9(1)
(2015) 81–90.
[3] S. Das and S.K. Samanta, On soft inner product spaces, Ann. Fuzzy Math. Inf. 6(1) (2013) 151–170.
[4] N. Faried, M.S.S. Ali and H.H. Sakr, On fuzzy soft Hermition operators, Sci. J. 9(1) (2020) 73–82.
[5] N. Faried, M. S. S. Ali and H. H. Sakr, On fuzzy soft linear operators in fuzzy soft Hilbert spaces, Abst. Appl.
Anal. 2020 (2020).
[6] N. Faried, M.S.S. Ali and H.H. Sakr, Fuzzy soft Hilbert spaces, Math. Stat. 8(3) (2020).
[7] A.Z. Khameneh, A. Kili¸cman and A.R. Salleh, Parameterized norm and parameterized fixed- point theorem by
using fuzzy soft set theory, arXiv, 15, (2013) 2.9, 2.10, 2.11, 2.12, 2.13, 2.14.
[8] P.K. Maji, R. Biswas and A.R. Roy, Fuzzy soft set, J. Fuzzy Math. 9(3) (2001) 677–692.
[9] D. Molodtsov, Soft set theory-First results, Comput. Math. Appl. 37 (1999) 19–31.
[10] T. J. Neog, D. K. Sut, and G. C. Hazarika, Fuzzy soft topological spaces, Int. J. Latest Trend. Math. 2(1) (2012)
[11] S. Das and S.K. Samanta, Projection operators on soft inner product spaces, Ann. Fuzzy Math. Inf. 11(5) (2016)
[12] M.I. Yazar, C.G. Aras and S. Bayramov, Results on soft Hilbert spaces, TWMS J. App. Eng. Math. 9(1) (2019)
[13] M. I. Yazar, C. G. Aras, S. Bayramov and C. Gunduz, A new view on soft normed spaces, Int. Math. For. 9(24)
(2014) 1149–1159.
[14] L.A. Zadeh, Fuzzy sets, Inf. Cont. 8(3) (1965) 338–353.
Volume 12, Issue 2
November 2021
Pages 2373-2382
  • Receive Date: 27 April 2021
  • Revise Date: 15 June 2021
  • Accept Date: 29 July 2021