[1] S. Bayramov and C. Gunduz, Soft locally compact spaces and soft paracompact spaces, J. Math. Syst. 3 (2013)
122–130.
[2] T. Beaula and M. M. Priyanga, A new notion for fuzzy soft normed linear space, Int. J. Fuzzy Math. Arch. 9(1)
(2015) 81–90.
[3] S. Das and S.K. Samanta, On soft inner product spaces, Ann. Fuzzy Math. Inf. 6(1) (2013) 151–170.
[4] N. Faried, M.S.S. Ali and H.H. Sakr, On fuzzy soft Hermition operators, Sci. J. 9(1) (2020) 73–82.
[5] N. Faried, M. S. S. Ali and H. H. Sakr, On fuzzy soft linear operators in fuzzy soft Hilbert spaces, Abst. Appl.
Anal. 2020 (2020).
[6] N. Faried, M.S.S. Ali and H.H. Sakr, Fuzzy soft Hilbert spaces, Math. Stat. 8(3) (2020).
[7] A.Z. Khameneh, A. Kili¸cman and A.R. Salleh, Parameterized norm and parameterized fixed- point theorem by
using fuzzy soft set theory, arXiv, 15, (2013) 2.9, 2.10, 2.11, 2.12, 2.13, 2.14.
[8] P.K. Maji, R. Biswas and A.R. Roy, Fuzzy soft set, J. Fuzzy Math. 9(3) (2001) 677–692.
[9] D. Molodtsov, Soft set theory-First results, Comput. Math. Appl. 37 (1999) 19–31.
[10] T. J. Neog, D. K. Sut, and G. C. Hazarika, Fuzzy soft topological spaces, Int. J. Latest Trend. Math. 2(1) (2012)
54–67.
[11] S. Das and S.K. Samanta, Projection operators on soft inner product spaces, Ann. Fuzzy Math. Inf. 11(5) (2016)
809–827.
[12] M.I. Yazar, C.G. Aras and S. Bayramov, Results on soft Hilbert spaces, TWMS J. App. Eng. Math. 9(1) (2019)
159–164.
[13] M. I. Yazar, C. G. Aras, S. Bayramov and C. Gunduz, A new view on soft normed spaces, Int. Math. For. 9(24)
(2014) 1149–1159.
[14] L.A. Zadeh, Fuzzy sets, Inf. Cont. 8(3) (1965) 338–353.