Some Mean Square Integral Inequalities For Preinvexity Involving The Beta Function

Document Type : Research Paper


1 Faculty of Exact and Natural Sciences, School of Physical Sciences and Mathematics, Pontifical Catholic University of Ecuador, Av. 12 de octubre 1076 y Roca, Apartado Postal 17-01-2184, Sede Quito, Ecuador

2 Department of Mathematics, University of Okara


In the present research, we will deal with mean square integral inequalities for preinvex stochastic process and η-convex stochastic process in the setting of beta function. Further, we will present some novel results for improved H¨older integral inequality. The results given in this present paper are generalizations of already existing results in the literature.


[1] H. Agahi, Refinements of mean-square stochastic integral inequalities on convex stochastic processes, Aequat.
Math. 90 (2016) 765-772.
[2] H. Agahi and M. Yadollahzadeh, On stochastic pseudo-integrals with applications, Stat. Probab. Lett. 124 (2017)
[3] H. G. Akdemir, N. O. Bekar and I. Iscan, On preinvexity for stochastic processes. Istatistik Journal of The
Turkish Statistical Association 7(1) (2014) 15-22 .
[4] A. Bain and D. Crisan, Fundamentals of stochastic filtering, Springer-Verlag, New York , 2009.
[5] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, 2nd edn.
World Scientific, Singapore, 2016.
[6] Z. Brzezniak and T. Zastawniak, Basic stochastic processes: a course through exercises, Springer Science and
Business Media, London, 2000.[7] P. Devolder, J. Janssen and R. Manca, Basic stochastic processes. Mathematics and Statistics Series, ISTE, John
Wiley and Sons, Inc. London, 2015.
[8] J. L. Doob, Stochastic processes depending on a continuous parameter, Transactions of the American Mathematical
Society 42 (1937) 107-140.
[9] H. Fu, M. S. Saleem, W. Nazeer, M. Ghafoor and P. Li, On Hermite-Hadamard type inequalities for n-polynomial
convex stochastic processes, AIMS Mathematics 6(6) (2021) 6322-6339.
[10] J. E. Hernández Hernández and J. F. Gómez, J. F., Some mean square integral inequalities involving the beta
function and generalized convex stochastic processes, TWMS J. App. and Eng. Math. , to appear in 2022.
[11] H. P. Hong, Application of the stochastic process to pitting corrosion, Corrosion 55 (1999) 10-16.
[12] K. Itô, On stochastic processes (I). In Japanese Journal of Mathematics: Transactions and Abstracts 18 (1941)
[13] C. Y. Jung, M. S. Saleem, S. Bilal, W. Nazeer and M. Ghafoor, Some properties of η-convex stochastic processes,
AIMS Mathematics 6(1) (2021) 726-736 .
[14] D. Kotrys, Hermite–Hadamard inequality for convex stochastic processes, Aequat. Math. 83 (2012) 143-151.
[15] D. Kotrys, Remarks on strongly convex stochastic processes, Aequat. Math. 86 (2013) 91-98.
[16] D. Kotrys , Remarks on Jensen, Hermite-Hadamard and Fejer inequalities for strongly convex stochastic processes,
Math. Aeterna 5 (2015) 95-104.
[17] W. Liu, W. Wen and J. Park, Hermite-Hadamrd type inequalities for MT-convex functions via classical integraland
fractional integrals, J. Nonlinear Sci. Appl. 9 (3) (2016) 766-777.
[18] T. Mikosch, Elementary stochastic calculus with finance in view, Advanced Series on Statistical Science and
Applied Probability, World Scientific Publishing Co., Inc., 2010.
[19] K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, Willey,
New York, 1993.
[20] B. Nagy, On a generalization of the Cauchy equation, Aequat. Math. 10 (1974) 165-171.
[21] K. Nikodem, On quadratic stochastic processes, Aequat. Math. 21 (1980) 192-199.
[22] K. Nikodem, On convex stochastic processes, Aequat. Math. 20 (1980) 184-197 .
[23] B. Ross, Fractional Calculus. Mathematics Magazine 50(3) (1977) 115-122.
[24] E. Set, M. Tomar and S. Maden, Hermite-Hadamard type inequalities for s-convex stochastic processes in the
second sense. Turkish Journal of analysis and number theory 2(6) (2014) 202-207 .
[25] M. Shaked and J. Shantikumar, Stochastic convexity and its applications, Arizona Univ., Tucson, 1985.
[26] J. J. Shynk, Probability, random variables, and random processes: theory and signal processing applications, John
Wiley and Sons, Inc., New York, 2013 .
[27] A. Skowronski, On some properties of J-convex stochastic processes, Aequat. Math . 44 (1992) 249-258 .
[28] A. Skowronski, On wright-convex stochastic processes, Ann. Math. Sil. 9 (1995) 29-32.
[29] A. Skowronski, On some properties of J-convex stochastic processes, Aequ. Math. 44 (1992) 249-258.
[30] K. Sobczyk, Stochastic differential equations with applications to physics and engineering. Kluwer, Dordrecht,
[31] T. Tunç, H. Baduk, F. Usta and M. Z. Sarikaya, On new generalized fractional integral operators and related
inequalities, Konuralp Journal of Mathematics 8 (2) (2020) 268-278.
Volume 12, Special Issue
December 2021
Pages 617-632
  • Receive Date: 02 August 2021
  • Revise Date: 21 August 2021
  • Accept Date: 30 August 2021