A subgradient extragradient method for equilibrium problems on Hadamard ‎manifolds

Document Type : Research Paper


Department of Computer Engineering, University of Torbat Heydarieh, Torbat Heydarieh, Iran


‎It is generalized the subgradient extragradient algorithm from linear spaces to nonlinear cases‎. ‎This algorithm introduces a method for solving equilibrium problems on Hadamard manifolds‎. ‎The global convergence of the algorithm is presented for pseudo-monotone and Lipschitz-type continuous bifunctions‎.


[1] P. N. Anh, T. N. Hai and P. M. Tuan, On ergodic algorithms for equilibrium problems , J. Glob. Optim. 64 (2016)
[2] M. P. do Carmo, Riemannian Geometry, Birkhauser, Boston, 1992.
[3] J. X. Cruz Neto, O. P. Ferreira and L. R. Lucambio P´erez, Contributions to the study of monotone vector fields,
Acta Math. Hungar. 94 (2002) 30–320.
[4] Y. Censor, A. Gibali and S. Reich, The subgradient extragradientmethod for solving variational inequalities in
Hilbert space, J. Optim. Theory Appl. 148 (2011) 318–335.
[5] Y. Censor, A. Gibali and S. Reich, Algoriyhms for the split variational inequality problem, Numer. Alghorithms
59 (2012) 301–323.
[6] J. X. Cruz Neto, P. S. M. Santos and P. A. Soares Jr, An extragradient method for equlibrium problems on
Hadamard manifolds, Optim. Lett. 10 (2016) 1327–1336.
[7] V. Dadashi, O. S. Iyiola and Y. Shehu, The subgradient extragradient method for pseudomonotone equlibrium
problems, Optimization 69 (2020) 901–923.
[8] F. Facchinei and J. S. Pang, Finite-dimensional variational inequalities and complementarity problems, Berlin,
Springer, 2002.
[9] K. Fan, A minimax inequality and applications, In: Shisha O, editor. Inequality III, pp. 103–113. New York,
Academic Press, 1972.
[10] O. P. Ferreira, L. R. Lucambio P´erez and S. Z. Nemeth, Singularities of monotone vector fields and an
extragradient-type algorithm, J. Global Optim. 31 (2005) 133–151.
[11] O. P. Ferreira and P. R. Oliveira, Proximal point alghorithm on Riemannian manifolds, Optimization 51 (2002)
[12] D. V. Hieu, New subgradient extragradient methods for common solutions to equilibrium problems, Comput.
Optim. Appl. 67 (2017) 1–24.
[13] D. V. Hieu, Halpern subgradient extragradient method extended to equilibrium problems, RACSAM 111 (2017)
[14] D. V. Hieu, New extragradient method for a class of equilibrium problems in Hilbert spaces, Appl. Anal. 97 (2018)
[15] D. V. Hieu, Convergence analysis of a new algorithm for strongly pseudomontone equilibrium problems, Numer.
Algorithms 77 (2018) 983–1001.
[16] C. Izuchukwu, Strong convergence theorem for a class of multiple-sets split variational inequality problems in
Hilbert spaces, Int. J. Nonlinear Anal. Appl. 9 (2018) 27–40.[17] H. Khatibzadeh and S. Ranjbar, A variational inequality in complete CAT(0) spaces, J. Fixed Point Theory Appl.
17 (2015) 557–574.
[18] H. Khatibzadeh, V. Mohebbi and S. Ranjbar, Convergence analysis of the proximal point algorithm for pseudomonotone equilibrium problems, Optimization Methods and Software 30 (2015) 1146–1163.
[19] H. Khatibzadeh, V. Mohebbi and S. Ranjbar, New results on the proximal point algorithm in non-positive curvature metric spaces, Optimization 66 (2017) 1191–1199.
[20] I. V. Konnov, Equilibrium models and variational inequalities, Amsterdam, Elsevier, 2007.
[21] G. M. Korpelevich, The extragradient method for finding saddle points and other problems, Ekonomikai Matematcheskie Metody 12 (1976) 747–756.
[22] A. Krist´aly, Nash-type equilibria on Riemannian manifolds: a variational approach, J. Math. Pure Appl. 101
(2014) 660–688.
[23] X. Li and N. Huang, Generalized vector quasi-equilibrium problems on Hadamard manifolds, Optim. Lett. 9 (2015)
[24] C. Li, G. L´opez and V. Mart´ın-M´arquez, Monotone vector field and the proximal point algorithm on Hadamard
manifolds, J. Lond. Math. Soc. 79 (2009) 663–683.
[25] C. Li, G. L´opez and V. Mart´ın-M´arquez, Iterative algorithms for nonexpansive mappings on Hadamard manifolds,
Taiwan. J. Math. 14 (2010) 541–559.
[26] S. Moradi, M. Shokouhnia and S. Jafari, Optimally local dense conditions for the existence of solutions for vector
equilibrium problems, Int. J. Nonlinear Anal. Appl. 10 (2019) 15–26.
[27] T. T. V. Nguyen, J. J. Strodiot and V. H. Nguyen, The interior proximal extragradient method for solving
equilibrium problems, J. Glob. Optim. 44 (2009) 175–192.
[28] D. Q. Tran, L. D. Muu and V. H. Nguyen, Extragradient algorithms extended to equilibrium problems, Optimization 57 (2008) 749–776.
[29] T. Rapcs´ak, Smooth nonlinear optimization in R
n, Nonconvex Optimization and its Applications, Kluwer Academic Publishers, Dordrecht, 1997.
[30] S. Ranjbar, W-convergence of the proximal point algorithm in complete CAT(0) metric spaces, Bull. Iranian Math.
Soc. 43 (2017) 817–834.
[31] T. Sakai, Riemannian geometry, American Mathematical Society, Providence, RI, 1996.
[32] C. Udriste, Convex functions and optimization methods on Riemannians manifolds, Kluwer Academic Publishers
Group, Dordrecht, 1994.
[33] J. H. Wang, G. L´opez, V. Mart´ın-M´arquez and C. Li, Monotone and accretive vector fields on Riemannian
manifolds, J. Optim. Theory Appl. 146 (2010) 691–708.
Volume 13, Issue 1
March 2022
Pages 75-84
  • Receive Date: 29 July 2020
  • Accept Date: 16 September 2020
  • First Publish Date: 07 September 2021