[1] H.O. Al-Humedi and A.K. Al-Wahed, Combine of B-spline Galerkin schemes with change weight function, Int. J. Engin. Innov. Res. 2 (2013) 340-349.
[2] H.O. Al-Humedi and Z.A. Jameel, Cubic B-spline least-square method combine with a quadratic weight function for solving integro-differential equations, Earthline J. Math. Sci. 4 (2020) 99–113.
[3] T.B. Benjamin, J.L. Bona and J.J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. R. Soc. Lond. Ser. A. 272 (1972) 47–78.
[4] S. Bhowmik and S. Karakoc, Numerical approximation of the generalized regularized long wave equation using Petrov-Galerkin finite element method, Numer. Meth. Partial Diff. Eq. 15 (2019) 1–22.
[5] J.L. Bona and P.J. Bryant, A mathematical model for long waves generated by wave makers in nonlinear dispersive systems, Proc. Cambridge Philos. Soc. 73 (1973) 391–405.
[6] I. Dag and M.N. Ozer, Approximation of the RLW equation by the least square cubic B-spline finite element method, Appl. Math. Model. 25 (2001) 221–231.
[7] A.J. Davies, The Finite Element Method, a First Approach, Clarendon Press. Oxford, London, 1980.
[8] C. DeBoor, A Practical Guide to Splines, Springer-Verlag, New York, 1978.
[9] S. Dhawan and S. Kumar, A numerical solution of one-dimensional heat equation using cubic B-spline basis functions, Int. J. Res. Rev Appl. Sci. 1 (2009) 71–77.
[10] S. Dhawan, S. Kumar and S. Kapoor, Approximation of Burger’s equation using B-spline finite element method, Int. J. Appl. Math. Mech. 7 (2011) 61–86.
[11] J.C. Eilbeck and G.R. McGuire, Numerical study of RLW equation numerical methods, J. Compt. Phys. 9 (1975) 43–57.
[12] L.R.T. Gardner, G.A. Gardner, F.A. Ayub and N.K. Amein, Approximations of solitary waves of the MRLW equation by B-spline, finite element, Arab. J. Sci., Eng. 22 (1997) 183–193.
[13] K.H. Jwamer, Minimizing error bounds in (0,2,3) lacunary interpolation by sextic spline function, J. Math. Stat.
3 (2007) 249–256.
[14] S. Karakoc, T. Geyikli and A. Bashan, Petrov-Galerkin finite element method for solving the MRLW equation, TWMS J. App. Eng. Math. 3 (2013) 231–244.
[15] S. Karakoc, Y. Ucar and N. Yagmurlu, Numerical solutions of the MRLW equation by cubic B-spline Galerkin finite element method, Kuwait J. Sci. 24 (2015) 141–159.
[16] A. K. Khalifa, K. R. Raslan and H. M. Alzubaidi, A finite difference scheme for the MRLW and solitary wave interactions, Appl. Math. Comput, 189 (2007) 346-354.
[17] A.K. Khalifa, K.R. Raslan and H.M. Alzubaidi, Numerical study using ADM for the modified regularized long wave equation, Appl. Math. Model. 32 (2008) 2962–2972.
[18] A.K. Khalifa, K.R. Raslan and H.M. Alzubaidi, A collocation method with cubic B- splines for solving the MRLW equation, J. Comput. Appl. Math. 212 (2008) 406–418.
[19] A.R. Mitchell and D.F. Griffiths, The Finite Difference Equations in Partial Differential Equations, John Wiley and Sons., New York, 1980.
[20] J. Noye, Numerical Solutions of Partial Differential Equations, North Holland Publishimg company-Amsterdam. New York. Oxford, 1982.
[21] D.H. Pergrine, Calculations of the development of an Undular Bore, J. Fluid Mech. 25 (1996) 321–330.
[22] P. M. Prenter, Splines and Variational Method, John Wiley and Sons, New York, USA, 1975.
[23] G. D. Smith, Numerical Solution of Partial Differential Equation, Finite Difference Methods, Oxford University Press, 1978.
[24] O.C. Zienkiewicz, The Finite Element Method, 3rd edition, McGraw Hill, London, 1979. equation by B-spline, finite element, Arab. J. Sci., Eng. 22 (1997) 183–193.