Hadamard and Fejér type inequalities for p-convex functions via Caputo fractional derivatives

Document Type : Research Paper

Authors

1 School of Natural Sciences, National University of Sciences and Technology, sector H-12, Islamabad, Pakistan.

2 School of Natural Sciences, National University of Sciences and Technology, H-12 Islamabad, Pakistan

Abstract

Here our aim is to prove the Hermite-Hadamard and Fejér inequalities for p-convex functions via Caputo fractional derivatives. We also establish some useful identities in order to find further Hadamard’s and Fejér type inequalities which are generalizations of the results given in the literature cited here.

Keywords

[1] S. Abbaszadeh and A. Ebadian, Nonlinear integrals and Hadamard-type inequalities, Soft Comput. 22(9) (2018) 2843–2849.
[2] S. Abbaszadeh and M. E. Gordji, A Hadamard-type inequality for fuzzy integrals based on r-convex functions, Soft Comput. 20(8) (2016) 3117–3124.
[3] M.R. Delavar and S.S. Dragomir, Hermite-Hadamard’s mid-point type inequalities for generalized fractional integrals, Rev. Real Acad. Cien. Exactas, F´ısicas y Naturales. Serie A. Mate. 114(2) (2020) 1–14.
[4] M.R. Delavar, M. Rostamian and M. De La Sen, A mapping associated to h-convex version of the HermiteHadamard inequality with applications, J. Math. Inequal. 14(2) (2020) 329–335.
[5] M.R. Delavar, S.S. Dragomir and S.M. Aslani, Hermite-Hadamard-Fej´er inequality related to generalized convex functions via fractional integrals, J. Math. 2018 (2018).
[6] S.S. Dragomir and S. Fitzpatrick, The Hadamard’s inequality for s-convex functions in the second sense, Demonstratio Math. 32 (1999) 687–696.
[7] S. S. Dragomir, J. Peˇcari´c and L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math. 21 (1995) 335–341.
[8] G. Farid, A. Javed and S. Naqvi, Hadamard and Fej´er-Hadamard inequalities and related results via Caputo fractional derivatives, Bull. Math. Anal. Appl. 9(3) (2017) 16–30.
[9] L. Fej´er, Uberdie fourierreihen, II, Math. Naturwise. Anz Ungar. Akad. Wiss (in Hungarian) 24 (1906) 369–390.
[10] J. Hadamard, Etude sur les propri´et´es des fonctions enti`eres et en particulier d’une fonction consid´er´ee par ´ Riemann, J. Math. Pures Appl., (1893) 171–215.
[11] Ch. Hermite, Sur deux limites d’une in´tegrale ´denie, Math. 3 (1883) 82.
[12] I. Iscan, Hermite-Hadamard type inequalities for p-convex functions, Int. J. Ana. Appl. 11(2) (2016) 137–145.
[13] F. Jarad, E. Ugurlu, T. Abdeljawad and D. Baleanu, On a new class of fractional operators, Adv. Difference Equ. 2017 (2017) 247.
[14] U. S. Kirmaci, M. K. Bakula, M. E. Ozdemir and J. Peˇcari´c, ¨ Hadamard-type inequalities for s-convex functions, Appl. Math. Comput. 193 (2007) 26–35.
[15] M. Kunt and I. Iscan, Hermite-Hadamard-Fej´er type inequalities for p-convex functions, Arab. J. Math. Sci. 23 (2017) 215–230.
[16] N. Mehreen and M. Anwar, Integral inequalities for some convex functions via generalized fractional integrals, J. Inequal. Appl. 2018 (2018) 208.
[17] N. Mehreen and M. Anwar, Hermite-Hadamard type inequalities via exponentially p-convex functions and exponentially s-convex functions in second sense with applications, J. Inequal. Appl. 2019 (2019) 92.
[18] N. Mehreen and M. Anwar, Hermite-Hadamard type inequalities via exponentially (p, h)-convex functions, IEEE Access 8 (2020) 37589–37595.
[19] N. Mehreen and M. Anwar, On some Hermite-Hadamard type inequalities for tgs-convex functions via generalized fractional integrals, Adv. Diff. Equ. 2020 (2020) 6.
[20] N. Mehreen and M. Anwar, Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for p-convex functions via conformable fractional integrals, J. Inequal. Appl. 2020 (2020) 107.
[21] N. Mehreen and M. Anwar, Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for p-convex functions via new fractional conformable integral operators, J. Math. Compt. Sci. 19 (2019) 230–240.
[22] N. Mehreen and M. Anwar, Some inequalities via ψ-Riemann−Liouville fractional integrals, AIMS Math. 4(5) (2019) 1403–1415.
[23] M.Z. Sarikaya, E. Set, H. Yaldiz and N. Ba¸sak, Hermite-Hadamard’s inequlities for fractional integrals and related fractional inequalitis, Math. Comput. Model. 57 (2013) 2403–2407.
[24] E. Set, M. Z. Sarikaya, M. E. Ozdemir and H. Yaldirm, ¨ The Hermite–Hadamard’s inequality for some convex functions via fractional integrals and related results, J. Appl. Math. Stat. Inf. 10 (2014) 69–83.
[25] H. Vosoughian, S. Abbaszadeh and M. Oraki, Hadamard integral inequality for the class of harmonically (γ, η)- convex functions, Front. Funct. Equ. Anal. Inequal. (2019) 695–711.
Volume 13, Issue 1
March 2022
Pages 253-266
  • Receive Date: 10 October 2020
  • Accept Date: 14 December 2020