[1] N.C. Ankeny , T.J. Rivlin, On a theorem of S. Bernstein, Pacific J. Math., 5 (1995), 849-852.
[2] Abdul Aziz, On the location of the zeros of certain composite polynomials, Pacific J. Math., 118(1985), no. 1, 17-26.
[3] A. Aziz , Q. M. Dawood, Inequalities for a polynomial and its derivative, J. Approx. Theory, 53 (1988), 155-162.
[4] A. Aziz , N. A. Rather, On an inequality of S. Bernstein and Gauss-Lucas Theorem, Analytic and Geometric Inequalities and Applications, Kluwer Academic Publishers, 1999, 29-35.
[5] S.Bernstein, Sur l’ordre de la meilleure approximation des fonctions continues par des polynˆomes de degr´e donn´e, Hayez, imprimeur des acad´emies royales, vol. 4, 1912.
[6] P. D. Lax, Proof of a conjecture of P. Erd¨os on the derivative of a polynomial, Bull. Amer. Math. Soc., 50(1994), no. 5, 509-513.
[7] M. Marden, Geometry of polynomials, Math Surveys, No. 3. Amer. Math. Soc. Providence 1949.
[8] G. V. Milovanovic, D. S. Mitrinovic, Th. M. Rassias, Topics In Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific Publications 1994.
[9] G. Polya , G. Szego, Aufgaben und lehrsatze aus der Analysis, Springer-Verlag,Berlin 1925.
[10] P. J. O’hara, R. S. Rodriguez, Some properties of self-inversive polynomials, Proc. Amer. Math. Soc., 44 (1974) 331-335.
[12] Q. I. Rahman , G. Schmeisser, Analytic theory of Polynomials, Clarendon Press Oxford 2002.