[1] R. P. Agarwal, N. Hussain, M.-A. Taoudi, Fixed point theorems in ordered Banach spaces and applications to nonlinear integral equations, Abstr. Appl. Anal., vol. 2012, Hindawi 2012.
[2] A. Aghajani, J. Bana´s, Y. Jalilian, Existence of solutions for a class of nonlinear Volterra singular integral equations, Comput. Math. Appl., 62(2011), no. 3, 1215-1227.
[3] I.K. Argyros, Quadratic equations and applications to Chandrasekhars and related equations, Bull. Austral. Math. Soc. 32 (1985) 275-292.
[4] J. Bana´s, Measures of noncompactness in the study of solutions of nonlinear differential and integral equations, Cent. Eur. J. Math., 10(2012), no. 6, 2003-2011.
[5] J. Bana´s , K. Goebel, Measures of noncompactness in Banach spaces, volume 60 of Lecture Notes in Pure and Applied Mathematics. Marcel Dekker, Inc., New York, 1980.
[6] J. Banas , M. Lecko, Fixed points of the product of operators in Banach algebra, Panamer. Math. J., 12(2002) 101-109.
[7] J. Banas, B. Rzepka, On existence and asymptotic stability of solutions of a nonlinear integral equation, J. Math. Anal. Appl., 284 (2003) 165-173.
[8] J. Bana´s , K. Sadarangani, Solutions of some functional-integral equations in Banach algebra, Math. Comput. Modelling, 38(2003), no. 3-4, 245-250.
[9] A. Ben Amar, A. Jeribi, M. Mnif, Some fixed point theorems and application to biological model, Numer. Funct. Anal. Optim., 29(2008), no. 1-2, 1-23.
[10] J. Caballero, A. B. Mingarelli, K. Sadarangani, Existence of solutions of an integral equation of Chandrasekhar type in the theory of radiative transfer, Electron. J. Diff. Eq., 57(2006), 1-11.
[11] S. Chandrasekhar, Radiative Transfer, Oxford Univ. Press, London, 1950.
[12] C. Corduneanu, Integral Equations and Applications, Cambridge Univ. Press, New York, 1973.
[13] M. A. Darwish , S. K. Ntouyas, On a quadratic fractional Hammerstein-Volterra integral equation with linear modification of the argument, Nonlinear Anal., 74(2011), no 11, 3510-3517.
[14] A. Das, B. Hazarika, P. Kumam, Some new generalization of Darbo’s fixed point theorem and its applications on integral equations, Mathematics, 7(2019), no. 3, 214.
[15] A. Deep, Deepmala, J. R. Roshan, K. S. Nisar, T. Abdeljawad, An extension of Darbo’s fixed point theorem for a class of system of nonlinear integral equations, Advances in Difference Equations. 2020(2020), no. 1, 1–17.
[16] Deepmala, H.K. Pathak, Study on existence of solutions for some nonlinear functional-integral equations with application, Math. Commun. 18(2013), 97-107.
[17] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.
[18] L. S. Goldenˇste˘ın , A. S. Markus. On the measure of non-compactness of bounded sets and of linear operators, Studies in Algebra and Math. Anal. (Russian), Izdat. “Karta Moldovenjaske”, Kishinev, (1965) 45–54 (Russian).
[19] S. Hu, M. Khavani , W. Zhuang, Integral equations arising in the kinetic theory of gases, Appl. Anal. 34 (1989) 261-266.
[20] C. T. Kelley, Approximation of solutions of some quadratic integral equations in transport theory, J. Integral Eq. 4 (1982) 221-237.
[21] M. Kazemi, R. Ezzati, Existence of solution for some nonlinear two-dimensional volterra integral equations via measures of noncompactness, Appl. Math. Comput., 275 (2016) 165-171.
[22] K. Kuratowski. Sur les espaces completes Fund. Math., 15(1930) 301–335.
[23] K. Maleknejad, R. Mollapourasl, K. Nouri. Study on existence of solutions for some nonlinear functional-integral equations, Nonlinear Anal., 69(8) (2008) 2582-2588.
[24] K. Maleknejad, K. Nouri, and R. Mollapourasl, Existence of solutions for some nonlinear integral equations Commun. Nonlinear Sci. Numer. Simul., 14(2009), no. 6, 2559-2564.
[25] K. Maleknejad, K. Nouri, R. Mollapourasl. Invgatestiion on the existence of solutions for some nonlinear functional integral equations Nonlinear Anal., 71(2009), no. 12, 1575-1578.
[26] L. N. Mishra, R. P. Agarwal, On existence theorems for some nonlinear functional-integral equations. Dynamic systems and Applications, 25 (2016), no. 3 303-320.
[27] L. N. Mishra, M. Sen , R. N. Mohapatra, On existence theorems for some generalized nonlinear functional-integral equations with applications, Filomat, 31(2017), no. 7, 2081-2091.
[28] N. I. Muskhelishvili. Some basic problems of the mathematical theory of elasticity. Fundamental equations, plane theory of elasticity, torsion and bending. P. Noordhoff, Ltd., Groningen, 1953. Translated by J. R. M. Radok.
[29] R. D. Nussbaum. The fixed-point index and fixed point theorem for k-set contractions. ProQuest LLC, Ann Arbor, MI, 1969, Thesis (Ph.D.)–The University of Chicago.
[30] D. O’Regan, Existence theory for nonlinear Volterra integrodifferential and integral equations, Nonlinear Anal. 31 (1998) 317-341.
[31] ˙I. Ozdemir, U. Cakan, B. Ilhan. On the existence of the solutions for some nonlinear Volterra integral equations Abstr. Appl. Anal., vol. 2013, Hindawi, 2013.
[32] ˙I. Ozdemir, B. Ilhan, U. Cakan, On the solutions of a class of nonlinear integral equations in Banach algebra of the continuous functions and some examples, An. Univ. Vest Timi Ser. Mat.-Inform., (2014) 121–140.
[33] ˙I. Ozdemir, U. Cakan, The solvability of some nonlinear functional integral equations, Studia Sci. Math. Hunger. 53(2016), 7-21.
[34] D. H. K. Pathak, A study on some problems on existence of solutions for nonlinear functional- integral equations, Acta Math. Scientia, 33(2013) 1305-1313.
[35] W. V. Petryshyn. Structure of the fixed points sets of k-set-contractions Arch. Rational Mech. Anal., 40(1971), no. 4, 312-328.
[36] M. Rabani, R. Arab, B. Hazarika, Solvability of nonlinear quadratic integral equation by using simulation type condensing operator and measure of noncompactness, Appl. Math. Comput., 349(2019), 102-117.
[37] M. Rabbani, A. Das, B. Hazarika, R. Arab, Existence of solution for two dimensional non-linear fractional integral equation by measure of noncompactness and iterative algorithm to solve it, J. Comput. App. Math., 370(2020), 112654, 1-17.
[38] M. Rabbani, A. Deep, On some generalized non-linear functional integral equations of two variables via measuresof noncompactness and numerical method to solve it, Mathematical Sciences (2021) 1-8.
[39] A. G. Ramm, Dynamical systems method for solving operator equations, volume 208 of Mathematics in Science and Engineering. Elsevier B. V., Amsterdam, 2007.
[40] S. Singh, B. Watson, P. Srivastava, Fixed point theory and best approximation: the KKM-map principle, volume 424 of Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht, 1997.