[1] A.K.H. Al-Ali, D. Dean, B. Senadji, V. Chandran and G.R. Naik, Enhanced forensic speaker verification using acombination of DWT and MFCC feature warping in the presence of noise and reverberation conditions, IEEE Access 5 (2017) 15400–15413.
[2] S. Arora, V. Venkataraman, A. Zhan, S. Donohue, K.M. Biglan, E.R. Dorsey and M.A. Little, Detecting and monitoring the symptoms of Parkinson’s disease using smartphones: A pilot study, Parkinsonism & Related Disorders 21(6) (2015) 650–653.
[3] T. Bocklet, E. N¨oth, G. Stemmer, H. Ruzickova and J. Rusz, Detection of persons with Parkinson’s disease by acoustic, vocal, and prosodic analysis, Automatic Speech Recognition and Understanding (ASRU), 2011 IEEE (2011) 478–483.
[4] M. Cernak, J.R. Orozco-Arroyave, F. Rudzicz, H. Christensen, J.C. V´asquez-Correa and E. N¨oth, Characterisation of voice quality of Parkinson’s disease using differential phonological posterior features, Comput. Speech Lang, 46 (2017) 196–208.
[5] B. Gupta and A. Bala, Parkinson’s disease in India: An analysis of publications output during 2002-2011, Int. J. Nutrition, Pharmacology, Neurological Diseases 3(3) (2013) 254–262.
[6] K. Gupta and D. Gupta, An analysis on LPC, RASTA, and MFCC techniques in automatic speech recognition system, 6th Int. Conf. Cloud Syst. Big Data Engin. (2016) 493–497.
[7] L. Jeancolas, H. Benali, B.E. Benkelfat, G. Mangone, J.C. Corvol, M. Vidailhet, S. Lehericy and D.P. Delacretaz, Automatic detection of early stages of Parkinson’s disease through acoustic voice analysis with Mel-frequency cepstral coefficients, Int. Conf. Adv. Tech. Signal Image Proc. IEEE, (2017) 1–6.
[8] J. Jankovic, Parkinson’s disease: clinical features and diagnosis, J. Neurology 79(4) (2008) 368–376.
[9] R. Kruger, J. Klucken, D. Weiss, L. Tonges, P. Kolber, S. Unterecker, M. Lorrain, H. Baas, T. Muller and P. Riederer, Classification of advanced stages of Parkinson’s disease: translation into stratified treatments, J. Neural Transm. 124(8) (2017b) 1015–1027.
[10] D. Mirarchi, P. Vizza, G. Tradigo, N. Lombardo, G. Arabia and P. Veltri, Signal analysis for voice evaluation in Parkinson’s disease, Healthcare Informatics (ICHI), 2017 IEEE Int. Conf. IEEE (2017) 530–535.
[11] L. Qian, Y. Zhang, L. Zheng, X. Fu, W. Liu, Y. Shang, Y. Zhang, Y. Xu, Y. Liu, H. Zhu and J.H. Gao, Frequency specific brain networks in Parkinson’s disease and comorbid depression, Brain Imag. Behav. 11(1) (2017) 224–239.
[12] A.B. Soliman, M. Fares, M.M. Elhefnawi and M. Al-Hefnawy, Features selection for building an early diagnosis machine learning model for Parkinson’s disease, Artificial Intelligence and Pattern Recognition (AIPR), Int. Conf. IEEE (2016) 1–4.
[13] J.C. V´asquez-Correa, J. Serra, J.R.O. Arroyave, J.V. Bonilla and E. N¨oth, Effect of acoustic conditions on algorithms to detect Parkinson’s disease from speech, Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE Int. Conf. IEEE (2017) 5065–5069.
[14] A.K. Verma, J. Raj, V. Sharma, T.B. Singh, S. Srivastava and R. Srivastava, Epidemiology and associated risk factors of Parkinson’s disease among the north Indian population, Clinical Epidem. Global Health 5(1) (2017) 8–13.
[15] P. Wicks, J. Stamford, M.A. Grootenhuis, L. Haverman and S. Ahmed, Innovations in e-health, Qual. Life Res. 23(1) (2014) 195–203.
[16] J. Wenhai and L. Yongwen, Energy-based feature ranking for assessing the dysphonia measurements in Parkinson detection, IET Signal Proc. 6(4) (2012) 300–305.