E-small essential submodules

Document Type : Research Paper

Authors

1 Department of Physics, College of Education, University of Samarra, Iraq

2 Directorate of Education Salah Eddin, Khaled Ibn Al Walid School, Tikrit, Iraq

Abstract

Let R be a commutative ring with identity, and UR be an R-module, with E=End(UR). In this work we consider a generalization of class small essential submodules namely E-small essential submodules. Where the submodule Q of UR is said E-small essential if Q W=0 , when W is a small submodule of UR, implies that NS(W)=0, where NS(W)={ψE | ImψW}. The intersection BR(U) of each submodule of UR contained in Soc(UR). The BR(U) is unique largest E-small essential submodule of UR, if UR is cyclic. Also in this paper we study BR(U) and WE(U). The condition when BR(U) is E-small essential, and Tot( U,U)=WE(U)=J(E) are given.

Keywords

[1] F.W. Anderson and K.R. Fuller, Rings and Categories of Modules, Springer-Verlag, 1992.
[2] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting Modules, Front. Mathematics, Birk¨auser Verlag, 2006.
[3] A. Haghany and M.R. Vedadi, Study of semi-projective retractable modules, Algebra Colloq. 14 (207) 489–496.
[4] T. A. Kalati and D.K. T¨ut¨unc¨u, Annihilator-small submodules, Bull. Iran Math. Soc. 39 (2013) 1053–1063.
[5] W. K. Nicholson and Y. Zhou, Annihilator-small right ideals, Algebra Colloq. 18 (2011) 785–800.
[6] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading, 1991.
[7] D.X. Zhan and X.R. Zhang, Small-Essential Submodule and Morita Duality, Southeast Asian Bull. Math. 35 (2021) 1051–1062.
Volume 13, Issue 1
March 2022
Pages 881-887
  • Receive Date: 09 August 2021
  • Revise Date: 05 September 2021
  • Accept Date: 24 September 2021