Study connection between the Laurent series and residues on the $\mathbf{A(z)}$ analytic functions

Document Type : Research Paper

Authors

Department of Mathematics, College of Education, Al-Mustansiriyah University, Baghdad, Iraq

Abstract

In this paper, we obtain a formula for residues and prove Laurent expansion and expansion to Taylor series for $A(z)$-analytic functions.

Keywords

[1] Boutet de Monvel, J. Sjostrand, Sur la singularite des noyaux de Bergman et de Szego, Journ. Equ. Deriv. Partielles (1976) 123–164.
[2] A. L. Bukhgeym and S.G. Kazantsev, Ellipticheskie sistemy tipa Bel’trami i zadachi tomografii, Elliptic Syst. Beitrami Type Prob. Doklady, Akademii Nauk SSSR, 315 (1990) 15–19.
[3] D.G. Crighton and J.-L. Lions, Complex Variables Introduction and Applications, Cambridge University, 2003.
[4] F. J. Flanigan, Complex variable harmonic and analytic functions, 1983.
[5] V. Gutlyanski, V. Ryazanov, U. Srebro and E. Yakubov, The Beltrami Equation: A Geometric Approach, Springer-Verlag, 2011.
[6] N.M. Jabborov and T.U. Otaboev, An analogue of the integral Cauchy theorem for A-analytic functions, Uzbek Mat. Zh. 4 (2016) 50–59.
[7] L. Mejlbro, Complex Functions Examples c-9 The Argument Principle and Many-Valued Function, Ventus Publishing ApS, 2008.
[8] S. Narayan and P.K. Mittal, Theory of Functions of a Complex Variable, S Chand Pub., 1956.
[9] A. Sadullaev and N. M. Jabborov, On a class of A-analytic functions, Zh. Sib. Fed. Univ. Ser. Math. Phys. 9(3) (2016) 374–383.
[10] J. Stewart, Calculus-Early Transcendental (7th ed.), Brooks/Cole Cengage Learning, 2012.
[11] Zh.K. Tishabvev, T. Otabev and Sh. Khursvnov Ya., Deduction and pricing of arguments for A(z)-analytic function, Results Sci. Technol. Modern Math. Appl. 144 (2018) 56–60.
[12] N. Vekua, Generalized Analytic Functions, Pergamon Press, Oxford, 1962.
Volume 13, Issue 1
March 2022
Pages 3103-3111
  • Receive Date: 01 November 2021
  • Revise Date: 11 December 2021
  • Accept Date: 03 January 2022