Hyers stability of lattice derivations

Document Type : Research Paper


1 Department of Mathematics, Behbahan Khatam Alanbia University of Technology, Iran.

2 Department of Mathematics, Hanyang University, Seoul, 133-791, South Korea

3 Department of Data Science, Daejin University, Kyunggi 11159, South Korea


In this paper, lattice derivations are introduced and studied and the Ulam stability of lattice derivations is investigated by using the direct method and the fixed point method.


[1] N. K. Agbeko, Stability of maximum preserving functional equations on Banach lattices, Miskolc Math. Notes, 13(2012) 187-196.
[2] C. D. Aliprantis and O. Burkinshaw, Positive operators, Springer Science and Business Media, 2006.
[3] L. Cadariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Grazer Mathematische Berichte, 2004.
[4] L. Cadariu and V. Radu, Fixed points and the stability of Jensen’s functional equation, J. Inequal. Pure Appl. Math, 4(2003) 1–4.
[5] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A., 27(1941) 222.
[6] Peter Meyer-Nieberg, Banach lattices, Springer Science and Business Media, 2012.
[7] A. K. Mirmostafaee and M. S. Moslehian, Fuzzy almost quadratic functions, Results Math., 52(2008) 161-177.
[8] M. Mirzavaziri and M. S. Moslehian, A fixed point approach to stability of a quadratic equation, Bull. Braz. Math. Soc., 37(2006) 361-376.
[9] S. M. S. Modarres Mosadegh and E. Movahednia, Stability of preserving lattice cubic functional equation in Menger probabilistic normed Riesz spaces, J. Fixed Point Theory Appl. 20 (2018) 34.
[10] E. Movahednia, Y. Cho, C. Park and S. Paokanta, On approximate solution of lattice functional equations in Banach f-algebras, AIMS Math., 5(2020) 5458-5469.
[11] E. Movahednia, C. Park and D. Y. Shin, Approximation of involution in multi-Banach algebras: Fixed point technique, AIMS Math., 6(2021) 5851-5868.
[12] M. R. Velayati and N. SalehiStability of maximum preserving functional equation on multi-Banach lattice by fixed point method, Fixed Point Theory, 21(2020) 363-374.
[13] P. LoeLoe, E. Movahednia and Manuel De la Sen, Hyers Stability and Multi-Fuzzy Banach Algebra, Mathematics, 10(2022) 106.
[14] V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory, 4(2003) 91-96.
[15] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc., 72(1978) 297-300.
[16] F. Riesz, Sur la d´ecomposition des op´erations fonctionnelles lin´eaires, In Atti del Congresso Internazionale dei Matematici, 3(1928) 143-148.
[17] H. H. Schaefer, In Banach Lattices and Positive Operators, Springer, 1974.
[18] S. M. Ulam, Problems in modern mathematics, Courier Corporation, 2004.
[19] A. C. Zaanen, Introduction to operator theory in Riesz spaces, Springer Science and Business Media, 2012.
Volume 13, Issue 1
March 2022
Pages 3239-3248
  • Receive Date: 28 July 2021
  • Revise Date: 03 August 2021
  • Accept Date: 21 November 2021