[1] M. Aboubacar, H. Matallah and M.F. Webster, Highly elastic solutions for Oldroyd-B and Phan-Thien/Tanner
fluids with a finite volume/element method: Planar contraction flows, J. Non-Newtonian Fluid Mech. 103(1)
(2002) 65–103.
[2] A. Al-Muslimawi, Taylor Galerkin pressure correction (TGPC) finite element method for incompressible Newtonian cable-coating flows, J. Kufa Math. Comput. 5(2) (2018) 14–22.
[3] A. Al-Muslimawi, H.R. Tamaddon-Jahromi and M.F. Webster, Numerical simulation of tube-tooling cable-coating
with polymer melts, Korea-Aust. Rheol. J. 25(4) (2013) 197–216.
[4] F. Belblidia, T. Haroon and M.F. Webster, The dynamics of compressible Herschel—Bulkley fluids in die-swell
flows, Boukharouba, M. Elboujdaini and G. Pluvinage (eds) Damage and Fracture Mechanics, Springer, Dordrecht, (2009) 425–434.
[5] C.-E. Br´ehier, Introduction to Numerical Methods for Ordinary Differential Equations, Pristina, Kosovo, Serbia,
2016.
[6] P.M. Coelho and F.T. Pinho, Vortex shedding in cylinder flow of shear-thinning fluids, J. Non-Newtonian Fluid
Mech. 110(2-3) (2003) 143–176.
[7] P.M. Coelho and F.T. Pinho, Vortex shedding in cylinder flow of shear-thinning fluids III, J. Non–Newtonian
Fluid Mech. 121(1) (2004) 55–68.
[8] J. Crank and P. Nicolson, A practical method for numerical evaluation of solutions of partial differential equations
of the heat-conduction type, Math. Proc. Camb. Phil.Soc. 43(1) (1947) 50–67.
[9] A.J. Davies, The Finite Element Method: An Introduction With Partial Differential Equations, OUP Oxford,
2011.
[10] J. Donea, A Taylor-Galerkin method for convective transport problems, Int. J. Numer. Meth. Eng. 20(1) (1984)
101–119.
[11] D.M. Hawken, H.R. Tamaddon-Jahromi, P. Townsend and M.F. Webster, A Taylor-Galerkin-based algorithm for
viscous incompressible flow, Int. J. Numer. Meth. Fluids 10(3) (1990) 327–351.[12] D.M. Hawken, P. Townsend and M.F. Webster, Numerical simulation of viscous flows in channels with a step,
Comput. Fluids 20(1) (1991) 59–75.
[13] Y. Liu and G. Glass, Effects of mesh density on finite element analysis, SAE Tech. Paper 2013(1) (2013) 1375.
[14] R. Loehner, K. Morgan, J. Peraire and O. Zienkiewicz, Finite element methods for high speed flows, 7th Comput.
Phys. Conf. 1985, pp. 1531.
[15] J.E. L´opez-Aguilar, M.F. Webster, A.H.A. Al-Muslimawi, H.R. Tamaddon-Jahromi, R. Williams, K. Hawkins, C.
Askill, C.L. Ch’ng, G. Davies, P. Ebden and K. Lewis, A computational extensional rheology study of two biofluid
systems, Rheol. Acta 54(4) (2014) 287–305.
[16] G. Lukaszewicz and P. Kalita, Navier–Stokes Equations An Introduction with Applications, Springer International
Publishing, 2018.
[17] P. Sivakumar, R.P. Bharti and R.P. Chhabra, Effect of power-law index on critical parameters for power-law flow
across an unconfined circular cylinder, Chem. Eng. Sci. 61(18) (2006) 6035–6046.
[18] H.R. Tamaddon Jahromi, M.F. Webster and P.R. Williams, Excess pressure drop and drag calculations for strainhardening fluids with mild shear-thinning: Contraction and falling sphere problems, J. Non-Newtonian Fluid Mech.
166(16) (2011) 939–950.
[19] P. Townsend and M.F. Webster, An algorithm for the three-dimensional transient simulation of non-Newtonian
fluid flows, Proc. Int. Conf. Num. Meth. Eng.: Theory and Applications, NUMETA, Nijhoff, Dordrecht, 12 (1987)
123–133.
[20] R.Y. Yasir, Al.H. Al-Muslimawi and B.K. Jassim, Numerical simulation of non-Newtonian inelastic flows in
channel based on artificial compressibility method, J. Appl. Comput. Mech. 6(2) (2020) 271–283.