[1] T. Abdeljawad, E. Karapinar, S. Kumari Panda and N. Mlaiki, Solutions of boundary value problems on extendedbranciari b-distance, J. Inequal. Appl. 2020 (2020), no. 1, 1–16.
[2] A.A. Abdou and M.F.S. Alasmari, Fixed point theorems for generalized α-ψ-contractive mappings in extended
b-metric spaces with applications, AIMS Math. 6 (2021), no. 6, 5465–5478.
[3] E. Ameer, H. Huang, M. Nazam and M. Arshad, Fixed point theorems for multivalued γ-fg-contractions with (α,
β)-admissible mappings in partial b-metric spaces and application, Sci. Bull. Ser. A Appl. Math. Phys. 81 (2019),
no. 2, 97–108.
[4] I.A. Bakhtin, The contraction mapping principle in quasimetric spaces, Func. An. Gos. Ped. Inst. Unianowsk 30
(1989), 26–3[5] A. Branciari, A fixed point theorem of banach-caccioppoli type on a class of generalized metric spaces, Pub. Math.
Debercen 57 (2000), 31–37.
[6] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int.
J. Math. Math. Sci. 29 (2002), no. 9, 531–536.
[7] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inf. Univ. Ostraviensis 1 (1993), no. 1, 5–11.
[8] R. George, S. Radenovic, K.P. Reshma and S. Shukla, Rectangular b-metric space and contraction principles, J.
Nonlinear Sci. Appl. 8 (2015), no. 6, 1005–1013.
[9] R. Jain, H. Kumar Nashine, R. George and Z.D. Mitrovi´c, On extended branciari-distance spaces and applications
to fractional differential equations, J. Funct. Spaces 2021 (2021).
[10] T. Kamran, M. Samreen and Q.U. Ain, A generalization of b-metric space and some fixed point theorems, Math.
5 (2017), no. 2, 19.
[11] E. Karapinar, P. Kumam and P. Salimi, On α-ψ-meir-keeler contractive mappings, Fixed Point Theory Appl.
2013 (2013), no. 1, 1–12.
[12] A. Latif, J. Rezaei Roshan, V. Parvaneh and N. Hussain, Fixed point results via α-admissible mappings and cyclic
contractive mappings in partial b-metric spaces, J. Inequal. Appl. 2014 (2014), no. 1, 1–26.
[13] N.T.T. Ly and N.T. Hieu, Some fixed point theorems for genaralized α-β-fg-contractions in b-metric spaces and
certain applications to the integral equations, East West Math. 20 (2018), no. 1, 86–106.
[14] N. Mlaiki, M. Hajji and T. Abdeljawad, A new extension of the rectangular-metric spaces, Adv. Math. Phys.
2020 (2020).
[15] H. Kumar Nashine, Z. Kadelburg and R.P. Agarwal, Existence of solutions of integral and fractional differential
equations using α-type rational f-contractions in metric-like spaces, Kyungpook Math. J. 58 (2018), no. 4, 651–
675.
[16] V. Parvaneh, N. Hussain and Z. Kadelburg, Generalized wardowski type fixed point theorems via α-admissible
fg-contractions in b-metric spaces, Acta Math. Sci. 36 (2016), no. 5, 1445–1456.
[17] B. Samet, C. Vetro and P. Vetro, Fixed point theorems for α–ψ-contractive type mappings, Nonlinear Anal. 75
(2012), no. 2, 2154–2165.
[18] D. Wardowski and N. Van Dung, Fixed points of f-weak contractions on complete metric spaces, Demonstr. Math.
47 (2014), no. 1, 146–155.
[19] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory
Appl. 2012 (2012), no. 1, 1–6.