[1] R.P. Agarwall, M. Meehan and D. O’Regan, Fixed point theory and applications, Cambridge University Press,
2001.
[2] A.G. Aksoy and M.A. Khamsi, Nonstandard methods in fixed point theory, Springer, New York, Berlin, 1990.
[3] S. Banach, Sur less opeerations dans les ensembles abstraits et leur applications aux equations integrates, Fund.
Math. 3(1922), 133–181.
[4] L.E.S. Brouwer, Uber abbildungen von mannigfaltigkeiten, Math. Ann. 77 (1912), 97–115.
[5] L. Boxer, Digitally continuous function, Pattern Recog. Lett. 15 (1994), 833–839.
[6] L. Boxer, A classical constructions for the digital fundamental group, J. Math. Imag. Vis. 10 (1999), 51–62.
[7] L. Boxer, Properties of digital homotopy, J. Math. Imag. Vis. 22 (2005), 19–26.
[8] L. Boxer, Digital products, wedges and covering spaces, J. Math. Imag, Vis. 25 (2006), no. 2, 159–171.
[9] O. Ege and I. Karaca, Lefschetz fixed point theorem for digital images, Fixed Point Theory, Appl. 2013 (2013),
13 pages.
[10] O. Ege and I. Karaca, Applications of the Lefschetz number to digital images, Bull. Belg. Math. Soc. Simon Stevin
21 (2014), 823–839.
[11] O. Ege and I. Karaca, Banach fixed point theorem for digital images, J. Nonlinear Sci. Appl. 8 (2015), 237–245.
[12] G.T. Herman, Oriented surfaces in digital spaces, CVGIP Graph. Mod. Image Process. 55 (1993) 381–396.
[13] S. Jain, S. Jain and L.B. Jain, On Banach contraction principle in a cone metric space, J. Nonlinear Sci. Appl.
5 (2012), 198–203.
[14] M. Jleli and B. Samet, A new generalisation of the Banach contraction principle, J. Inequal. Appl. 2014 (2014),
8 pages.
[15] K. Jyoti and A. Rani, Digital expansions endowed with fixed point theory, Turk. J. Anal. Number Theory 5 (2017),
no. 5, 146–152.
[16] R. Kannan, Some results on fixed point, Bull. Cal. Math. Soc. 60 (1968), 71–76.
[17] R. Kannan, Some results on fixed point II, Amer. Math. Month. 76 (1969), no. 4, 405–408.
[18] T.Y. Kong, A digital fundamental group, Comput. Graph. 13 (1989), 159–166.
[19] A. Rosenfeld, Digital topology, Amer. Math. Month. 86 (1979), 76–87.[20] B.E. Rhoades, Fixed point theorems and stability results for fixed point iteration procedures, Indian J. Pure Appl.
Math. 24 (1993), no. 11, 691–703.
[21] V.M. Sehgal and A.T. Reid Bharucha, Fixed points of contraction mappings on PM-spaces, Math. Syst. Theory
6 (1972), 97–102.
[22] W. Shatanawi and H.K. Nashine, A generalisation of Banach’s contraction principle for nonlinear contraction in
a partial metric space, J. Nonlinear Sci. Appl. 5 (2012), 37–43.
[23] T. Zamfirescu, Fixed point theorems in metric spaces, Arch. Math. 23 (1972), 292–298.