[1] A. Atabaigi, A. Barati and H. Norouzi, Bifurcation analysis of an enzyme-catalyzed reaction-diffusion system, Comput. Math. Appl. 75 (2018), 4361–4377.
[2] T. Ak, S. Dhawan, S.B.G. Karakoc, S.K. Bhowmik and K.R. Raslan,Numerical study of rosenau-KdV equation using finite element method based on collocation approach, Math. Model. Anal. 22 (2017), no. 3, 373–388.
[3] A. Barati and A. Atabaigi, Numerical solutions of a system of singularly perturbed reaction-diffusion problems, Filomat 33 (2019), no. 15, 4889–4905.
[4] T.B. Benjamin, J.L. Bona and J.J. Mahony,Model equations for long waves in nonlinear dispersive systems, Philos. Trans.R. Soc. Lond. Ser. A. 272 (1972), 47–78.
[5] B. Bialecki, Sinc-collocation methods for two-point boundary value problems, IMA J. Numer. Anal. 11 (1991), 357–375.
[6] A. Bueno-Orovio, D. Kay, V. Grau,B. Rodriguez and K. Burrage,Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization, J.R. Soc. Interface 11 (2014), 20140352.
[7] K. Burrage,N. Hale, and D. Kay,An efficient implicit FEM scheme for fractional-in-space reaction-diffusion equations, SIAM J. Sci. Comput. 34 (2012), A2145–A2172.
[8] I. Dag and M.N. Ozer, ¨ Approximation of RLW equation by least square cubic B-spline finite element method, Appl. Math. Model. 25 (2001), 221–231.
[9] I. Dag, B. Saka and D. Irk, Application of cubic B-splines for numerical solution of the RLW equation, Appl. Math. Comput. 159 (2004), 373–389.
[10] A. Esen and S. Kutluay, Application of a lumped Galerkin method to the regularized long wave equation, Appl. Math. Comput. 174 (2006), 833–845.
[11] R. FitzHugh,Mathematical models of threshold phenomena in the nerve membrane, Bull. Math. Biophys. 17 (1955), 257–278.
[12] L. R.T. Gardner, G.A. Gardner and I. Dag,A B-spline finite element method for the regularized long wave equation, Commun. Numer. Methods Eng. 11 (1995), 59–68.
[13] R. Herrmann,Fractional calculus: An introduction for physicists, World Scientific. Singapore, 2011.
[14] A. Hasegawa, and K. Mima, Pseudo three-dimensional turbulence in magnetized nonuniform plasma, Phys. Fluids 21 (1978), 87–92.
[15] J.W. Horton ,Fluctuation spectra of a drift wave soliton gas, Phys. Fluids 25(1982), 1838–1843.
[16] S. Islam, S. Haq and A. Ali, A meshfree method for the numerical solution of RLW equation, J. Comput. Appl. Math. 223 (2009), 997–1012.
[17] D. Kaya, A numerical simulation of solitary-wave solutions of the generalized regularized long-wave equation, Appl. Math. Comput. 149 (2004), 833–841.
[18] Y. Luchko and A. Punzi, Modeling anomalous heat transport in geothermal reservoirs via fractional diffusion equations, Int. J. Geomath. 1 (2011), no. 1, 257–276.
[19] P. Lyu and S. Vong, A linearized second-order finite difference scheme for time fractional generalized BBM equation, Appl. Math. Lett. 78 (2018), 16–22.
[20] P. Lyu and S. Vong, A high-order method with a temporal nonuniform mesh for a time-fractional Benjamin BonaMahony equation, J. Sci. Comput. 80(2019), 1607–1628.
[21] J. Lund and K. Bowers, Sinc methods for quadrature and differential equations, SIAM, Philadelphia, PA. 1992.
[22] Y. M.Lin and C.J. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225 (2007), 1533–1552.
[23] R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep. 339 (2000), 1–77.
[24] M. Mirzazadeh, M. Ekici and A. Sonmezoglu, On the solutions of the space and time fractional Benjamin– Bona–Mahony equation, Iran. J. Sci. Technol. Trans. Sci. 41 (2017), 819–836.
[25] K.S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, NewYork, 1993.
[26] I. Podlubny,Fractional differential equations, Academic Press, New York, 1999.
[27] J. Rashidinia, A. Barati and M. Nabati,Application of Sinc-Galerkin method to singularly perturbed parabolic convection-diffusion problems, Numer. Algor. 66 (2014), 643–662.
[28] W. Rudin, Principles of Mathematical Analysis, Third Edition. McGraw-Hill Inc., 1976.
[29] R.A. Saxton, Dynamic instability of the liquid crystal director, Contem. Math. 100 (1989), 325–330.
[30] F. Stenger, Numerical methods based on Sinc and analytic functions, Springer, New york, 1993.
[31] A. Saadatmandi, A. Asadi and A. Eftekhari, Collocation method using quintic B-spline and sinc functions for solving a model of squeezing flow between two infinite plates, Int. J. Comput. Math. 93 (2016), no. 11, 1921–1936.
[32] Y. M Wang, A high-order linearized and compact difference method for the time-fractional Benjamin–Bona–Mahony equation, Appl. Math. Lett. 105 (2020), 106339.
[33] M. Youssef and G. Baumann, Troesch’s problem solved by Sinc methods, Math. Comput. Simul. 162 (2019), 31–44.