[1] H.A. Abass, A.A. Mebawondu and O.T. Mewomo, Some results for a new three iteration scheme in Banach spaces, Bull. Univ. Transilvania Brasov, Ser. III: Math. Inf. Phys. 11 (2018), no. 2, 1–18.
[2] M. Abass and T. Nazir, A new faster iteration process applied to constrained minimization and feasibility problems, Mate. Vesnik, 66 (2014), no. 2, 223–234.
[3] M. Abbas, Z. Kadelburg and D.R. Sahu, Fixed point theorems for Lipschitzian type mappings in CAT(0) spaces, Math. Comp. Model. 55 (2012), 1418–1427.
[4] R.P. Agarwal, D. O’Regan and D.R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Convex Anal. 8 (2007), no. 1, 61–79.
[5] V. Berinde, Picard iteration converges faster than Mann iteration for a class of quasicontractive operators, Fixed Point Theory Appl. 2 (2004), 97–105.
[6] F.E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. USA. 54 (1965), 1041–1044.
[7] P. Cholamijak and S. Suantai, Iterative variational inequalities and fixed point problem of nonexpansive semigroups, J. Glob. Optim. 57 (2013), 1277–1297.
[8] P. Chuadchawna, A. Farajzadeh and A. Kaewcharoen, Fixed-point approximation of generalized nonexpansive mappings via generalized M-iteration in hyperbolic spaces, Int. J. Math. Sci. 2020 (2020), 1–8.
[9] M. Ert¨urk, F. G¨ursoy and N. S¸im¸sek, S-iterative algorithm for solving variational inequalities, Int. J. Comput. Math. 98 (2021), no. 3, 435–448.
[10] M. Ert¨urk, F. G¨ursoy, Q. Ansari and V. Karakaya, Picard type iterative method with application to minimization problems and split feasibility problems, J.Nonlinear Convex Anal. 21 (2020), 943–951.
[11] G. Ficher, Sul pproblem elastostatico di signorini con ambigue condizioni al contorno, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur, 34 (1963), 138–142.
[12] G. Ficher, Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno, Atti Accad. Naz. Lincci, Cl. Sci. Fis. Mat. Nat., Sez. 7 (1964), 91–140.
[13] F. Giannessi, Vector variational inequalities and vector equilibria, Mathematical theories, 38, Kluwer Academic publisher, Dordrecht, 2000.
[14] F. Gursoy, M. Ert¨urk and M. Abbas Picard-type iterative algorithm for general variational inequalities and nonexpansive mappings, Numer. Algor. 83 (2020), 867–883.
[15] F. Gursoy, A Picard-S iterative method for approximating fixed point of weak-contraction mappings, Filomat 30 (2016), 2829–2845.
[16] S. Ishikawa, Fixed points by new iteration method, Proc. Amer. Math. Soc. 149 (1974), 147–150.
[17] M.A. Krasnosel’skii, Two remarks on the method of successive approximations, Usp. Mat. Nauk. 10 (1955), 123–127.
[18] W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506–510.
[19] M.A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl. 251 (2000), 217–229.
[20] G. Stampacchia, Formes bilinearies coercivities sur les ensembles convexes, C. R. Acad. Sci. Paris 258 (1964), 4413–4416.
[21] B.S. Thakur, D. Thakur and M. Postolache, A new iterative scheme for numerical reckoning fixed points of Suzuki’s generalized nonexpansive mappings, App. Math. Comp. 275 (2016), 147–155.
[22] K. Ullah and M. Arshad, Numerical reckoning fixed points for Suzuki generalized nonexpansive mappings via new iteration process, Filomat 32 (2018), no. 1, 187–196.
[23] K. Ullah and M. Arshad, Some results for a new three iteration scheme in Banach spaces, U.P.B. Sci. Bull. Ser. A 79 (2018), no. 4, 113–122.
[24] N.C. Wong, D.R. Sahu and J.C. Yao, Solving variational inequalities involving nonexpansive type mapping, Nonlinear Anal. 69 (2008), 4732–4753.