[1] Y. Liu, Application of the Chebyshev polynomial in solving Fredholm integral equations, J. Math. Comput. Model. 50 (2009), 465–469.
[2] M.R.A. Sakran, Numerical solutions of integral and integro- differential equations using Chebyshev polynomials of the third kind, J. Appl. Math. Comput. 351 (2019), 66–82.
[3] H. Laeli, Dastjerdi and F. M. Maalek Ghaini, Numerical solution of Volterra-Fredholm integral equations by moving least square method and Chebyshev polynomials, J. Math. Comput. Model. 7 (2012), no. 36, 3283–3288.
[4] K. Maleknejad, S. Sohrabi and Y. Rostami, Numerical solution of nonlinear Volterra integral equations of the second kind by using Chebyshev polynomials, J. Appl. Math. Comput. 188 (2007), 123–128.
[5] L. Yucheng, Application of the Chebyshev polynomial in solving Fredholm integral equations, J. Math. Comput. Model. 50 (2009), 465–469.
[6] K. Maleknejad and R. Dehbozorgi, Adaptive numerical approach based upon Chebyshev operational vector for nonlinear Volterra integral equations and its convergence analysis, J. Comp. Appl. Math. 344 (2018), 356–366.
[7] N. Negarchi and K. Nouri, Numerical solution of Volterra– Fredholm integral equations using the collocation method based on a special form of the M¨untz– Legendre polynomials, J. Comp. Appl. Math. 344 (2018), 15–24.
[8] S. Yal¸cinbas, M. Sezer and H.H. Sorkun, Legendre polynomial solutions of high-order linear Fredholm integrodifferential equations, J. Appl. Math. Comput. 210 (2009), 334–349.
[9] M. El- kady and M. Biomy, Efficient Legendre pseudospectral method for solving integral and Integro-differential Equations, J. Commun. Nonlinear. Sci. Numer. Simul. 15 ( 2010), 1724–1739.
[10] S. Bazm, Bernoulli polynomials for the numerical solution of some classes of linear and nonlinear integral equations, J. Comp. Appl. Math. 275 (2015), 44–60.
[11] B.N. Mandal and S. Bhattacharya, Numerical solution of some classes of integral equations using Bernstein polynomials, J. Appl. Math. Comput. 190 (2007), 1707–1716.
[12] K. Maleknejad, E. Hashemizadeh and R. Ezzati, A new approach to the numerical solution of Volterra integral equations by using Bernstein’s approximation, J. Commun. Nonlinear. Sci. Numer. Simul. 16 (2011), 647–655.
[13] S. Bhattacharya and B.N. Mandal, Use of Bernstein polynomial in numerical solutions of Volterra integral equations, J. Appl. Math. Sci. 36 (2008), 1773–1787
[14] Q. Wanga, K. Wanga and S. Chenb, Least squares approximation method for the solution of Volterra– Fredholm integral equations, J. Comp. Appl. Math. 272 (2014), 141–147.
[15] A. Darijani and M. Mohseni- Moghadam, Improved polynomial approximations for the solution of nonlinear integral equations, Sci. Iran. 20 (2013), 765–770.
[16] Z. Gouyandeh, T. Allahviranloo and A. Armand, Numerical solution of nonlinear Volterra-Fredholm- Hammerstein integral equations via Tau-collocation method with convergence analysis, J. Comp. Appl. Math. 308 (2016), 435–446.
[17] F. Mirzaee and E. Hadadiyan, Numerical solution of Volterra–Fredholm integral equations via modification of hat functions, J. Appl. Math. Comput. 280 (2016), 110–123.
[18] I. Aziz and S. ul- Islam, New algorithms for the numerical solution of nonlinear Fredholm and Volterra integral equations using Haar wavelets, J. Comp. Appl. Math. 239 (2013), 333–345.
[19] C.H. Hsiao, Hybrid function method for solving Fredholm and Volterra integral equations of the second kind, J. Comp. Appl. Math. 230 (2009), 59–68.
[20] R. Kress, Linear integral equations, Springer-Verlag, New York, 1998.
[21] G.M. Phillips, Interpolation and Approximation by Polynomials, Springer-Verlag, New York, 2003.