On the common zero of a finite family of monotone operators in Hadamard spaces and its applications

Document Type : Research Paper


Department of Mathematics, Higher Education Center of Eghlid, Eghlid, Iran


‎In this paper‎, ‎‎a common zero of a finite family of monotone operators on Hadamard spaces is‎‎ approximated via Mann-type proximal point algorithm. Some applications in convex minimization and fixed point theory are also presented.


[1] B. Ahmadi Kakavandi, Weak topologies in complete CAT(0) metric spaces, Proc. Amer. Math. Soc. 141 (2013), 1029–1039.
[2] B. Ahmadi Kakavandi and M. Amini, Duality and subdifferential for convex functions on complete CAT(0) metric spaces, Nonlinear Anal. 73 (2010), 3450–3455.
[3] QH. Ansari and F. Babu, Existence and boundedness of solutions to inclusion problems for maximal monotone vector fields in Hadamard manifolds, Optim. Lett. 14 (2020), 711–727.
[4] M. Baˇc´ak, The proximal point algorithm in metric spaces, Israel J. Math. 194 (2013), 689–701.
[5] M. Baˇc´ak, Convex Analysis and Optimization in Hadamard Spaces, Walter de Gruyter GmbH, Berlin, 2014.
[6] I.D. Berg and IG. Nikolaev, Quasilinearization and curvature of Alexandrov spaces, Geom. Dedicata 133 (2008),195–218.
[7] B.A. Bin Dehaish and M.A. Khamsi, Mann iteration process for monotone nonexpansive mappings, Fixed Point Theory Appl. 177 (2015).
[8] M. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Fundamental Principles of Mathematical Sciences. Springer, Berlin, 1999.
[9] K.S. Brown, Buildings, Springer, New York, 1989.
[10] H. Br´ezis and P.L. Lions, Produits infinis der´esolvantes, Israel J. Math. 29 (1978), 329–345.
[11] D. Burago, Y. Burago and S. Ivanov, A Course in Metric Geometry, Graduate Studies in Math., 33, Amer. Math. Soc., Providence, RI, 2001.
[12] S. Dhompongsa and B. Panyanak, On ∆-convergence theorems in CAT(0) spaces, Comput. Math. Appl. 56 (2008), 2572–2579.
[13] B. Djafari Rouhani and H. Khatibzadeh, On the proximal point algorithm, J. Optim. Theory Appl. 137 (2008), 411–417.
[14] R. Esp´inola, A. Ferna´ndez-Leo´n, CAT(κ)-spaces, weak convergence and fixed points, J. Math. Anal. Appl. 353 (2009), 410–427.
[15] K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc, New York, 1984.
[16] M. Gromov and SM. Bates, Metric Structures for Riemannian and Non-Riemannian Spaces, with appendices by M. Katz, P. Pansu and S. Semmes, ed. by J. Lafontaine and P. Pansu, Progr. Math. 152, BirkhNauser, Boston, 1999.
[17] O. G¨uler, On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Optim. 29 (1991), 403–419.
[18] M.T. Heydari, A. Khadem and S. Ranjbar, Approximating a common zero of finite family of monotone operators in Hadamard spaces, Optim. 66 (2017), 2233–2244.
[19] M.T. Heydari and S. Ranjbar, Halpern-type proximal point algorithm in complete CAT(0) metric spaces, An. tiint. Univ. Ovidius Constanta Ser. Mat. 24 (2016), 141–159.
[20] J. J¨ost, Nonpositive Curvature: Geometric and Analytic Aspects, Lectures Math. ETH ZNurich, BirkhNauser, Basel, 1997.
[21] S. Kamimura and W. Takahashi, Approximating Solutions of Maximal Monotone Operators in Hilbert Spaces, J. Approx. Theory 106 (2000), 226–240.
[22] H. Khatibzadeh, Some remarks on the proximal point algorithm, J. Optim. Theory Appl. 153 (2012), 769–778.
[23] H. Khatibzadeh and S. Ranjbar, A variational inequality in complete CAT(0) spaces, J. Fixed Point Theory Appl. 17 (2015), 557–574.
[24] H. Khatibzadeh and S. Ranjbar, Monotone operators and the proximal point algorithm in complete CAT(0) metric spaces, J. Aus. Math. Soc. 103 (2017), 70–90.
[25] W.A. Kirk, Fixed point theorems in CAT(0) spaces and R-trees, Fixed Point Theory Appl. 4 (2004), 309–316.
[26] W.A. Kirk and B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal. 68 (2008), 3689–3696.
[27] T.C. Lim, Remarks on some fixed point theorems, Proc. Amer. Math. Soc. 60 (1976), 179–182.
[28] B. Martinet, R´egularisation d’In´equations Variationnelles par Approximations Successives, Revue Fran. Inf. Rech. Op´er. 3 (1970), 154–158.
[29] G. Morosanu, Nonlinear Evolution Equations and Applications, Editura Academiei Romane (and D. Reidel publishing Company), Bucharest, 1988.
[30] S. Ranjbar, W-convergence of the proximal point algorithm in complete CAT(0) metric spaces, Bull. Iranian Math. Soc. 43 (2017), 817–834.
[31] S. Ranjbar and H. Khatibzadeh, ∆-convergence and w-convergence of the modified Mann iteration for a family of asymptotically nonexpansive type mappings in complete CAT(0) spaces, Fixed Point Theory 17 (2016), 151–158.
[32] S. Ranjbar and H. Khatibzadeh, Strong and ∆-convergence to a zero of a monotone operator in CAT(0) spaces, Mediterr. J. Math. 14 (2017), 56.
[33] R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14 (1976), 877–898.
Volume 14, Issue 2
February 2023
Pages 359-367
  • Receive Date: 04 February 2021
  • Revise Date: 05 July 2022
  • Accept Date: 27 July 2022
  • First Publish Date: 07 September 2022