[1] E. Asplund, Chebyshsev sets in Hilbert spaces, Trans. Amer. Math. Soc. 144 (1969), 235—240
[2] C. Franchetti and M. Furi, Some characteristic properties of real Hilbert spaces, Rev. Roumaine Math. Pures Appl. 17 (1972), 1045–1048.
[3] R.C. Buck, Applications of duality in approximation theory, In Approximation of Functions, (Proc. Symp. Gen. Motors Res. Lab. 1964, 1965, pp. 27–42.
[4] S. Elumalai and R. Vijayaragavan, Farthest points in normed linear spaces, Gen. Math. 14 (3) (2006), 9–22.
[5] C. Franchetti and I. Singer, Deviation and farthest points in normed linear spaces, Rev. Roum Math. Pures Appl. 24 (1979), 373–381.
[6] O. Hadzic, A theorem on best approximations and applications, Univ. Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 22 (1992), 47–55.
[7] R. Khalil and Sh. Al-Sharif, Remotal sets in vector valued function spaces, Sci. Math. Japon. 3 (2006), 433–442.
[8] H.V. Machado, A characterization of convex subsets of normed spaces, Kodai Math. Sem. Rep. 25 (1973), 307–320.
[9] M. Martin and T.S.S.R.K. Rao, On remotality for convex sets in Banach spaces, J. Approx. Theory 162 (2010), 392–396.
[10] H. Mazaheri, T. D. Narang and H.R. Khademzadeh, Nearest and Farthest points in normed spaces, In Press Yazd University, 2015.
[11] H. Mazaheri, A characterization of weakly-Chebyshev subspaces of Banach spaces, J. Nat. Geom. 22 (2002), no. 1-2, 39–48.
[12] H. Mohebi, On quasi-Chebyshev subspaces of Banach spaces, J. Approx. Theory 107 (2000), no. 1, 87–95.
[13] A. Niknam, On uniquely remotal sets, Indian J. Pure Appl. Math. 15 (1984), 1079–1083.
[14] A. Niknam, Continuity of the farthest point map, Indian J. Pure Appl. Math. 18 (1987), 630–632.
[15] T.D. Narang, On the farthest points in convex metric spaces and linear metric spaces, Pub. Inst. Math. 95 (2014), no. 109, 229–238.
[16] I. Singer, Best approximation in normed linear spaces by elements of linear subspaces, Springer-Verlag, New York-Berlin, 1970.