[1] A. Barari, B. Fadaee and H. Ghahramani, Linear maps on standard operator algebras characterized by action on zero products, Bull. Iran. Math. Soc. 45 (2019), 1573–1583.
[2] B. Behfar and H. Ghahramani, Lie maps on triangular algebras without assuming unity, Mediterr. J. Math. 18 (2021), 215.
[3] D. Benkovic, Lie triple derivations of unital algebras with idempotents, Linear Multilinear Algebra 63 (2015), 141–165.
[4] D. Benkovic and N. ˇSirovnik, Jordan derivations of unital algebras with idempotents, Linear Algebra Appl. 437 (2012), 2271–2284.
[5] M. Bresar, Commuting maps: A survey, Taiwanese J. Math. 8 (2004), 361–397.
[6] W.S. Cheung, Commuting maps of triangular algebras, J. London Math. Soc. 63 (2001), 117–127.
[7] B. Fadaee and H. Ghahramani, Linear maps on C∗-algebras behaving like (anti-)derivations at orthogonal elements, Bull. Malays. Math. Sci. Soc. 43 (2020), 2851–2859.
[8] B. Fadaee and H. Ghahramani, Lie centralizers at the zero products on generalized matrix algebras, J. Alg. Appl. 21 (2022), no. 8.
[9] A. Fosner and W. Jing, Lie centralizers on triangular rings and nest algebras, Adv. Oper. Theory 4 (2019), no. 2, 342–350.
[10] H. Ghahramani, Additive mappings derivable at nontrivial idempotents on Banach algebras, Linear Multilinear Algebra 60 (2012), 725–742.
[11] H. Ghahramani, Linear maps on group algebras determined by the action of the derivations or anti-derivations on a set of orthogonal elements, Results Math. 73 (2018), 132–146.
[12] H. Ghahramani, Characterizing Jordan maps on triangular rings through commutative zero products, Mediterr. J. Math. 15 (2018), no. 2, 1–10.
[13] H. Ghahramani and W. Jing, Lie centralizers at zero products on a class of operator algebras, Ann. Funct. Anal. 12 (2021), 1–12.
[14] F. Ghomanjani and M.A. Bahmani, A note on Lie centralizer maps, Palest. J. Math. 7 (2018), no. 2, 468–471.
[15] A. Jabeen, Lie (Jordan) centralizers on generalized matrix algebras, Commun. Algebra 49 (2021), no. 1, 278–291.
[16] Y. Li, F. Wei and A. Fosner, k-commuting mappings of generalized matrix algebras, Period. Math. Hungar. 79 (2019), no. 1, 50–77.
[17] L. Liu, On nonlinear Lie centralizers of generalized matrix algebras, Linear Multilinear Algebra 70 (2020), 2693–2705.
[18] C.R. Miers, Lie triple derivations of von Neumann algebras, Proc. Amer. Math. Soc. 71 (1978), 57–61.
[19] A.H. Mokhtari and H.R. Ebrahimi Vishki, More on Lie derivations of generalized matrix algebras, Miskolc Math. Notes, 1 (2018), 385–396.
[20] K. Morita, Duality for modules and its applications to the theory of rings with minimum condition, Rep. Tokyo Kyoiku Diagaku Sect. A 6 (1958), 83–142.
[21] A.D. Sands, Radicals and Morita contexts, J. Algebra 24 (1973), no. 2, 335–345.
[22] Z.K. Xiao and F. Wei, Commuting mappings of generalized matrix algebras, Linear Algebra Appl. 433 (2010), 2178–2197.
[23] Z. Xiao and F. Wei, Lie triple derivations of triangular algebras, Linear Algebra Appl. 437 (2012), no. 5, 1234–1249.