[1] I. Aziz and R. Amin, Numerical solution of a class of delay differential and delay partial differential equations via Haar wavelet, Appl. Math. Model. 40 (2016), 10286–10299.
[2] I. Aziz, S. Islam and M. Asif, Haar wavelet collocation method for three-dimensional elliptic partial differential equations, Comput. Math. Appl. 73 (2017), 2023–2034.
[3] I. Aziz and I. Khan, Numerical solution of diffusion and reaction–diffusion partial integro-differential equations. Int. J. Comput. Meth. 15 (2018), 1850047.
[4] P. Assari, On the numerical solution of two-dimensional integral equations using a meshless local discrete Galerkin scheme with error analysis, Eng. Comput. 35 (2019), no. 3, 893–916.
[5] K.E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge University Press, 1997.
[6] A. Babaaghaie and K. Maleknejad, Numerical solutions of nonlinear two-dimensional partial Volterra integrodifferential equations by Haar wavelet, J. Comput. Appl. Math. 317 (2017), 643–651.
[7] E. Babolian, S. Bazm and P. Lima, Numerical solution of nonlinear two-dimensional integral equations using Rationalized Haar functions, Commun. Nonl. Sci. Numer. Simul. 16 (2011), no. 3, 1164–1175. [8] H. Brunner and J.-P. Kauthen, The numerical solution of two-dimensional Volterra integral equations by collocation and iterated collocation, IMA J. Numer. Anal. 9 (1989), no. 1, 47–59.
[9] H. Brunner, On the numerical solution of nonlinear Volterra–Fredholm integral equations by collocation methods, SIAM J. Numer. Anal. 27 (1990), no. 4, 987–1000
[10] C.F. Chen and C.H. Hsiao, Haar wavelet method for solving lumped and distributed parameter systems, IEE Proc. Contr. Theor. Appl. 144 (1997), 87–94.
[11] H.J. Dobner, Bounds for the solution of hyperbolic problems, Comput. 38 (1987), 209–218
[12] M. Erfanian, M. Parsamanesh and A. Akrami, Solving two-dimensional nonlinear Fredholm integral equations using rationalized Haar functions in the complex plane, Int. J. Appl. Comput. Math. 5 (2019), 47.
[13] M. Erfanian and M. Gachpazan, A new method for solving of telegraph equation with Haar wavelet, Int. J. Comput. Sci. 3 (2016), 6–10 .
[14] M. Erfanian, M. Gachpazan and S. Kosari, A new method for solving of Darboux problem with Haar Wavelet, SeMA J. 74 (2017), 475–487.
[15] M. Erfanian and A. Mansoori, Rationalized Haar wavelet bases to approximate the solution of the first Painleve equations, J. Math. Model. 7 (2019), 107–116
[16] M. Erfanian, The approximate solution of nonlinear integral equations with the RH wavelet bases in a complex plane, Int. J. Appl. Comput. Math. 4 (2018), 31.
[17] M. Erfanian,The approximate solution of nonlinear mixed Volterra-Fredholm Hammerstein integral equations with RH wavelet bases in a complex plane, Math. Method Appl. Sci. 41 (2018), 8942–8952.
[18] G.Q. Han, K. Hayami, K. Sugihara and J. Wang, Extrapolation method of iterated collocation solution for twodimensional non-linear Volterra integral equation, Appl. Math. Comput. 112 (2000), 49–61.
[19] Z. Kamont and H. Leszczynski, Numerical solutions to the Darboux problem with functional dependence, Georgian Math. 5 (1998), no. 1, 71–90
[20] R.T. Lynch and J.J. Reis, Haar transform image conding, Proc. Nat. Telecommun. Conf., Dallas, TX, 1976, pp. 441–443.
[21] U. Lepik, Haar wavelet method for nonlinear integro-differential equations, Appl. Math. Comput. 176 (2006), 324–333.
[22] U, Lepik, Solving fractional integral equations by the Haar wavelet method, Appl. Math. Comput. 214 (2009), 468–478.
[23] F. Mirzaee and N. Samadyar, Numerical solution based on two-dimensional orthonormal Bernstein polynomials for solving some classes of two-dimensional nonlinear integral equations of fractional order, Appl. Math. Comput. 344 (2019), 191–203.
[24] K. Maleknejad, S. Sohrabi and B. Baranji, Two-dimensional PCBFs: application to nonlinear Volterra integral equations, Proc. Worldcong. Engin. (WCE), vol II. July 1–3, London, UK. 2009.
[25] S. Mckee, T. Tang and T. Diogo, An Euler-type method for two-dimensional Volterra integral equations of the first kind, IMA J. Numer. Anal. 20 (2000), 423–440.
[26] S. Nemati, P.M. Lima and Y. Ordokhani, Numerical solution of a class of two-dimensional nonlinear Volterra integral equations using Legendre polynomials, J. Comput. Appl. Math. 242 (2013), 53–69.
[27] M. Rastegar, A. Bazrafshan Moghaddam, M. Erfanian and B.B. Moghaddam, Using matrix-based rationalized Haar wavelet method for solving consolidation equation, Asian-Eur. J. Math. 12 (2019), 1950086.
[28] M. Razzaghi and J. Nazarzadeh, Walsh functions, Wiley Encycl. Electric. Electron. Engin. 23 (1999), 429–440.
[29] P. Wojtaszczyk, A Mathematical Introduction to Wavelets, Cambridge University Press, Cambridge, 1997.