[1] MO. Aibinu and S. Moyo, Constructing exact solutions to systems of reaction-diffusion equations, Int. J. Nonlinear Anal. Appl. In Pres, 1–11, http://dx.doi.org/10.22075/ijnaa.2022.27013.3475
[2] M.O. Aibinu, S.C. Thakur and S. Moyo, Exact solutions of nonlinear delay reaction-diffusion equations with variable coefficients, Partial Differ. Equ. Appl. Math. 4 (2021), 100170.
[3] M.O. Aibinu, S.C. Thakur and S. Moyo, Constructing exact solutions to modelling problems, NUMISHEET 2022. Springer, Cham, 2022, pp. 39–48.
[4] M.O. Aibinu, SC. Thakur and S. Moyo, On construction of exact solutions of delay reaction-diffusion systems, Proc. Anal. Numer. Meth. Differ. Equ. (ANMDE 2021 and Yanenko 100), 23-26 August, 2021, Suranaree University of Technology, Thailand, (2022), A2 1-A2 8.
[5] D. Bazeia, A. Das, L. Losano and M.J. Santos, Traveling wave solutions of nonlinear partial differential equations, Appl. Math. Lett. 23 (2010), no. 6, 681–686.
[6] R. Cherniha, O. Pliukhin, New conditional symmetries and exact solutions of reaction diffusion systems with power diffusivities, J. Phys. A: Math. Theor. 41 (2008) 185208
[7] RM. Cherniha and O. Pliukhin, New conditional symmetries and exact solutions of nonlinear reaction diffusionconvection equations, J. Phys. A Math. Theory 40 (2007), no. 33, 10049–10070.
[8] M. Hesaaraki and A. Razani, Detonative travelling waves for combustion, Appl. Anal. 77 (2001), 405–418.
[9] SV. Meleshko and S. Moyo, On the complete group classification of the reaction-diffusion equation with a delay, J. Math. Anal. Appl. 338 (2008), 448–466.
[10] A.G. Nikitin, Group classification of systems of non-linear reaction-diffusion equations with general diffusion matrix. II. Generalized turing systems, J. Math. Anal. Appl. 332 (2007), 666–690.
[11] P. Pandey, S. Kumar, J.F. G´omez-Aguilar and D. Baleanu, An efficient technique for solving the space-time fractional reaction-diffusion equation in porous media, Chin. J. Phys.ics 68 (2020), 483–492.
[12] A.D. Polyanin, Generalized traveling-wave solutions of nonlinear reaction-diffusion equations with delay and variable coefficients, Appl. Math. Lett. 90 (2019), 49–53.
[13] A.D. Polyanin, Functional separable solutions of nonlinear reaction-diffusion equations with variable coefficients, Appl. Math. Comput. 347 (2019), 282–292.
[14] A.D. Polyanin, Functional separable solutions of nonlinear convection-diffusion equations with variable coefficients, Commun. Nonlinear Sci. Numer. Simul. 73 (2019), 379–390.
[15] A.D. Polyanin, Exact solutions of nonlinear sets of equations of the theory of heat and mass transfer in reactive media and mathematical biology, Theor. Found. Chem. Engin. 38 (2004), no. 6, 622–635.
[16] A.D. Polyanin and V.G. Sorokin, Reductions and exact solutions of Lotka-Volterra and more complex reactiondiffusion systems with delays, Appl. Math. Lett. 125 (2022), 107731.
[17] A.D. Polyanin and V.G. Sorokin, A method for constructing exact solutions of nonlinear delay PDEs, J. Math. Anal. Appl. 494 (2021), 124619.
[18] A.D. Polyanin and V.G. Sorokin, New exact solutions of nonlinear wave type PDEs with delay, Appl. Math. Lett. 108 (2020), 106512.
[19] A.D. Polyanin and V.F. Zaitsev, Handbook of ordinary differential equations: exact solutions, methods, and problems, Boca Raton, CRC Press, 2018.
[20] A.D. Polyanin and V.F. Zaitsev, Handbook of exact solutions for ordinary differential equations, 2nd Edition, Boca Raton, Chapman & Hall/CRC Press, 2003.
[21] A.D. Polyanin and A.I. Zhurov, The generating equations method: Constructing exact solutions to delay reactiondiffusion systems and other non-linear coupled delay PDEs, Int. J. Nonlinear Mech. 71 (2015), 104–115.
[22] A.D. Polyanin and A.I. Zhurov, Non-linear instability and exact solutions to some delay reaction-diffusion systems, Int. J. Nonlinear Mech. 62 (2014) 33-40.
[23] A Razani, Subsonic detonation waves in porous media, Phys. Scr. 94 (2019), no. 085209, 6 pages.
[24] A. Razani, Chapman-Jouguet travelling wave for a two-steps reaction scheme, Ital. J. Pure Appl. Math. 39 (2018), 544–553.
[25] A. Razani, Shock waves in gas dynamics, Surveys Math. Appl. 2 (2007), 59–89.
[26] V.G. Sorokin, A. Vyazmin, A.I. Zhurov, V. Reznik and A.D. Polyanin, The heat and mass transfer modeling with time delay, Chem. Engin. Trans. 57 (2017), 1465–1470.
[27] W.F. Trench, Elementary differential equations, Faculty Authored and Edited Books & CDs., 2013.
[28] T. Zhang and Y. Jin, Traveling waves for a reaction-diffusion-advection predator-prey model, Nonlinear Anal.: Real World Appl. 36 (2017), 203–232.
[29] R. Williamson, Introduction to differential equations, Englewood Cliffs, NJ: Prentice-Hall, 1986.