[1] G.W. Bluman and S. Kumei, Symmetries and Differential Equations, Springer-Verlag, New York Applied Mathematical Sciences, 1989.
[2] S.J. Chen and X. L¨u, Lump and lump-multi-kink solutions in the (3+1)-dimensions, Commun. Nonlinear Sci. Numer. Simul. 109 (2022), 106103.
[3] M.L. Gandarias and M.S. Bruzon, Some conservation laws for a forced KdV equation, Nonlinear Anal. Real World Appl. 13 (2012), no. 6, 2692–2700.
[4] M.L. Gandarias and M.S. Bruzon, Symmetry analysis and exact solutions of some Ostrovsky euqtions, Theoret Math. Phys. 168 (2011), no. 1, 898–911.
[5] M.L. Gandarias and M.S. Bruzon, Traveling wave solutions for a generalized Ostrovsky equation, Math. Meth. Appl. Sci. 41 (2018), no. 15, 5840–5850.
[6] X.J. He and X. L¨u, M-lump solution, soliton solution and rational solution to a (3+1)-dimensional nonlinear model, Math. Comput. Simulation 197 (2022), 327–340.
[7] N.H. Ibragimov, CRC Handbook of Lie Group Analysis of Differential Equations, Vol 1-3, CRC Press Boca Raton Florida, 1994-1996.
[8] C.K. Kuo and W.X. Ma, An effective approach for constructing novel KP-like equations, Waves Random Complex Media 32 (2022), no. 2, 629–640.
[9] R. Naz, F.M. Mahomed and D.P. Mason, Comparison of different approaches to conservation laws for some partial differential equations in fluid mechanics Appl. Math. Comput. 205 (2008), no. 1, 212–230.
[10] P.J. Olver, Applications of Lie Groups to Differential Equations, 2nd edition, Graduate Texts in Mathematics, Springer-Verlag, Berlin, 1993.
[11] H. Steudel, Uber die Zuordnung zwischen Invarianzeigenschaften und Erhaltungssatzen, Zeit. Naturforsch 17 (1962), no. 2, 129–132.
[12] H. Triki, A. Benlalli and A.M. Wazwaz, Exact solutions of the generalized Pochhammer-Chree equation with sixth-order dispersion, Roman. J. Phys. 60 (2015), 935–951.
[13] H. Triki and A.M. Wazwaz, Bright and dark soliton solutions for a K(m, n) equation with t-dependent coefficients, Phys. Lett. A 373 (2009), 2162–2165.
[14] A.M. Wazwaz, New (3 +1)-dimensional Date-Jimbo-Kashiwara-Miwa equations withconstant and time-dependent coefficients: Painlev´e integrability, Phys. Lett. A 384 (2020), 126787.
[15] Y. Yıldırım and E. Yasar, A (2+1)-dimensional breaking soliton equation: Solutions and conservation laws, Chaos Solitons Fractals 107 (2018), 146–155.