Well-posedness and analyticity for the viscous primitive equations of geophysics in critical Fourier-Besov-Morrey Spaces with variable exponents

Document Type : Research Paper

Authors

Laboratory LMACS, FST of Beni-Mellal, Sultan Moulay Slimane University, Morocco

Abstract

In this paper, we establish the global well-posedness result of the viscous primitive equations of geophysics in the critical Fourier-Besov-Morrey space with variable exponents $\mathcal{F \dot{N}}_{p(\cdot),k(\cdot),q}^{2-\frac{3}{p(\cdot)}}(\mathbb{R}^{3}),$ when the initial data are small and Pandtl number $P=1,$ we also show the Gevrey class regularity of the solution.

Keywords

[1] A. Abbassi, C. Allalou and Y. Oulha, Well-posedness and stability for the viscous primitive equations of geophysics in critical Fourier-Besov-Morrey spaces, Int. Cong. Moroccan Soc. Appl. Math., 2019, pp. 123–140
[2] M.Z. Abidin and J. Chen, Global well-posedness and analyticity of generalized porous medium equation in FourierBesov- Morrey spaces with variable exponent, Mathematics 9 (2021), no. 5, 498.
[3] M.Z. Abidin and J. Chen, Global well-posedness for fractional Navier-Stokes equations in variable exponent Fourier-Besov-Morrey spaces, Acta Math. Sci. 41 (2021), no. 1, 164–176.
[4] M.Z. Abidin and R. Shaolei, Global well-posedness of the incompressible fractional Navier-Stokes equations in Fourier-Besov spaces with variable exponents, Comput. Math. Appl. 77 (2019), no. 4, 1082–1090.
[5] A. Almeida and A. Caetano, Variable exponent Besov-Morrey spaces, J. Fourier. Anal. Appl. 26 (2020), no. 1, 1–42.
[6] A. Almeida and P. H¨ast¨o, Besov spaces with variable smoothness and integrability, J. Funct. Anal. 258 (2010), no. 5, 1628–1655.
[7] A. Almeida, J. Hasanov and S. Samko, Maximal and potential operators in variable exponent Morrey spaces, Georgian Math. J. 15 (2008), no. 2, 195–208.
[8] M.F. Almeida, L.C.F. Ferreira and L.S.M. Lima, Uniform global well-posedness of the Navier-Stokes-Coriolis system in a new critical space, Math. Z. 287 (2017), 735–750.
[9] L.L. Aurazo-Alvarez and L.C.F. Ferreira, Global well-posedness for the fractional Boussinesq Coriolis system with stratification in a framework of Fourier-Besov type, Partial Differ. Equ. Appl. 2 (2021), no. 5, Paper No. 62, 18 pp.
[10] A. Azanzal, A. Abbassi and C. Allalou, Existence of solutions for the Debye-H¨uckel system with low regularity initial data in critical Fourier-Besov-Morrey spaces, Nonlinear Dyn. Syst. Theory 21 (2021), no. 4, 367–380.
[11] A. Azanzal, C. Allalou and S. Melliani, Well-posedness, analyticity and time decay of the 3D fractional magnetohydrodynamics equations in critical Fourier-Besov-Morrey spaces with variable exponent, J Elliptic Parabol Equ (2022). https://doi.org/10.1007/s41808-022-00172-x.
[12] A. Azanzal, C. Allalou and S. Melliani, Well-posedness and blow-up of solutions for the 2D dissipative quasigeostrophic equation in critical Fourier-Besov-Morrey spaces, J. Elliptic Parabolic Equ. 8 (2022), no. 1, 23–48.
[13] A. Azanzal, C. Allalou and A. Abbassi, Well-posedness and analyticity for generalized Navier-Stokes equations in critical Fourier-Besov-Morrey spaces, J. Nonlinear Funct. Anal. 2021 (2021), Article ID 24.
[14] A. Azanzal, A. Abbassi and C. Allalou, On the Cauchy problem for the fractional drift-diffusion system in critical Fourier-Besov-Morrey spaces, Int. J. Optim. Appl. 1 (2021), 28.
[15] A. Babin, A. Mahalov and B. Nicolaenko, Fast singular oscillating limits and global regularity for the 3D primitive equations of geophysics, ESAIM: Math. Model. Numer. Anal. 34 (2000), no. 2, 201–222.
[16] A. Babin, A. Mahalov and B. Nicolaenko, On the asymptotic regimes and the strongly stratified limit of rotating Boussinesq equations, J. Theor. Comp. Fluid Dyn. 9 (1997), 223–251.
[17] H. Bae, A. Biswas and E. Tadmor, Analyticity and decay estimates of the Navier-Stokes equations in critical Besov spaces, Arch. Ration. Mech. Anal. 205 (2012), no. 3, 963–991.
[18] H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier analysis and nonlinear partial differential equations, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 343. Springer, Heidelberg, 2011.
[19] M. Cannone and G. Wu, Global well-posedness for Navier-Stokes equations in critical Fourier- Herz spaces, Nonlinear Anal.: Theory, Meth. Appl. 75 (2012), no. 9, 3754–3760. 
[20] C. Cao and E.S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Ann. Math. 166 (2007), 245–267.
[21] C. Cao and E.S. Titi, Global well-posedness of the 3D primitive equations with partial vertical turbulence mixing heat diffusion, Comm. Math. Phys. 310 (2012), 537–568.
[22] F. Charve, Global well-posedness and asymptotics for a geophysical fluid system, Comm. Partial Differ. Equ. 29 (2004), 1919–1940.
[23] F. Charve, Global well-posedness for the primitive equations with less regular initial data, Ann. Fac. Sci. Toulouse Math. 17 (2008), 221–238.
[24] F. Charve and V. Ngo, Global existence for the primitive equations with small anisotropic viscosity, Rev. Mat. Iberoam. 27 (2011), 1–38.
[25] B. Cushman-Roisin, Introduction to geophysical fluid dynamics, Prentice-Hall, Englewood Cliffs, New Jersey, 1994.
[26] L. Diening, Maximal function on generalized Lebesgue spaces L p(x) , Univ Math Fak, 2002.
[27] A. El Baraka and M. Toumlilin, Global well-posedness for fractional Navier-Stokes equations in critical FourierBesov Morrey spaces, Moroccan J. Pure and Appl. Anal. 3 (2017), no. 1, 1–14.
[28] A. El Baraka and M. Toumlilin, Uniform well-Posedness and stability for fractional Navier- Stokes equations with Coriolis force in critical Fourier-Besov-Morrey spaces, Open J. Math. Anal. 3 (2019), no. 1, 70–89.
[29] L.C. Ferreira and L.S. Lima, Self-similar solutions for active scalar equations in Fourier-Besov-Morrey spaces, Monatsh. Math. 175 (2014), no. 4, 491–509.
[30] J. Fu and J. Xu, Characterizations of Morrey type Besov and Triebel-Lizorkin spaces with variable exponents, J.Math. Anal. Appl. 381 (2011), 280–298.
[31] T. Iwabuchi, Global well-posedness for Keller–Segel system in Besov type spaces, J. Math. Anal. Appl. 379 (2011), 930–948.
[32] T. Iwabuchi and R. Takada, Global well-posedness and ill-posedness for the Navier-Stokes equations with the Coriolis force in function spaces of Besov type, J. Funct. Anal. 267 (2014), no. 5, 1321–1337.
[33] T. Kato, Strong solutions of the Navier-Stokes equations in Morrey spaces, Bol. Soc. Brasil Mat. 22 (1992), no. 2, 127–155.
[34] P. Konieczny and T. Yoneda, On dispersive effect of the Coriolis force for the stationary Navier-Stokes equations, J. Differ. Equ. 250 (2011), no. 10, 3859—3873.
[35] Z. Lei and F. Lin, Global mild solutions of Navier-Stokes equations, Comm. Pure Appl. Math. 64 (2011), no. 9, 1297–1304.
[36] P.G. Lemari´e-Rieusset, Recent developments in the Navier-Stokes equations, Chapman and Hall, Research Notes in Maths, 2002.
[37] P.G. Lemari´e-Rieusset, The role of Morrey spaces in the study of Navier-Stokes and Euler equations, Eurasian Math. 3 (2012), no. 3, 62–93.
[38] J. Pedlosky, Geophysical fluid dynamics, 2nd edn, Springer-Verlag , New York, 1987.
[39] J. Sun and S. Cui, Sharp well-posedness and ill-posedness in Fourier-Besov spaces for the viscous primitive equations of geophysic, arXiv:1510.0713v1.
[40] W. Wang and G. Wu, Global mild solution of the generalized Navier-Stokes equations with the Coriolis force, Appl. Math. Lett. 76 (2018), 181–186.
[41] W. Wang, Global well-posedness and analyticity for the 3D fractional magneto-hydrodynamics equations in variable Fourier-Besov spaces, Z. Angew. Math. Phys. 70 (2019), no. 6, 1–16.
Volume 14, Issue 1
January 2023
Pages 2915-2929
  • Receive Date: 18 June 2022
  • Revise Date: 11 November 2022
  • Accept Date: 21 January 2023