[1] H. Brunner, Nonpolynomial spline collocation for volterra equations with weakly singular kernels, SIAM J. Numer. Anal. 20 (1983), no. 6, 1106–1119.
[2] , The numerical solution of weakly singular volterra integral equations by collocation on graded meshes, Math. Comput. 45 (1985), no. 172, 417–437.
[3] H. Brunner, A. Pedas, and G. Vainikko, The piecewise polynomial collocation method for nonlinear weakly singular volterra equations, Math. Comput., volume=68, number=227, pages=1079–1095, year=1999.
[4] K. Kant and G. Nelakanti, Jacobi spectral methods for volterra-urysohn integral equations of second kind with weakly singular kernels, Numer. Funct. Anal. Optim. (2019), 1–35.
[5] , Error analysis of jacobi–galerkin method for solving weakly singular volterra–hammerstein integral equations, Int. J. Comput. Math. 97 (2020), no. 12, 2395–2420.
[6] , Galerkin and multi-galerkin methods for weakly singular volterra–hammerstein integral equations and their convergence analysis, Comput. Appl. Math. 39 (2020), 1–28.
[7] W.R. Mann and F. Wolf, Heat transfer between solids and gases under nonlinear boundary conditions, Quart. Appl. Math. 9 (1951), no. 2, 163–184.
[8] R. Nigam, K. Kant, B.V.R. Kumar, and G. Nelakanti, Approximation of weakly singular non-linear volterraurysohn integral equations by piecewise polynomial projection methods based on graded mesh, J. Appl. Anal. Comput.
[9] W.E. Olmstead, A nonlinear integral equation associated with gas absorption in a liquid, Z. Angew. Math. Phys. 28 (1977), no. 3, 513–523.
[10] M. Rebelo and T. Diogo, A hybrid collocation method for a nonlinear volterra integral equation with weakly singular kernel, J. Comput. Appl. Math. 234 (2010), no. 9, 2859–2869.
[11] T. Tang, X. Xu, and J. Cheng, On spectral methods for volterra integral equations and the convergence analysis, J. Comput. Math. (2008), 825–837.
[12] Z. Xie, X. Li, and T. Tang, Convergence analysis of spectral galerkin methods for volterra type integral equations, J. Sci. Comput. 53 (2012), no. 2, 414–434.