[1] S. Amat, S. Busquier and S. Plaza , Review of some iterative root-finding methods from a dynamical point of view, Sci. A: Math. Sci. 10 (2004), 3–35.
[2] S. Amat, S. Busquier and S. Plaza, A construction of attracting periodic orbits for some classical third-order iterative methods, J. Comput. Appl. Math. 189 (2006), 22–33.
[3] S. Amat, S. Busquier and S. Plaza, On the dynamics of a family of third-order iterative functions, ANZIAM J. 48 (2007), no. 3, 343–359.
[4] S. Amat, C. Berm´udez, S. Busquier, J. Carrasco and S. Plaza, Super-attracting periodic orbits for a classic third order method, J. Comput. Appl. Math. 206 (2007), 599–602.
[5] S. Amat, C. Berm´udez, S. Busquier and S. Plaza, On the dynamics of the Euler iterative function, Appl. Math. Comput. 197 (2008), 725–732.
[6] S. Amat, S. Busquier and S. Plaza, Chaotic dynamics of a third-order Newton-type method, J. Math. Anal. Appl. 366 (2010), 24–32.
[7] S. Amat, S. Busquier, E. Navarro and S. Plaza, Superattracting cycles for some Newton type iterative methods, Sci. China Math. 54 (2011), no. 3, 539–544.
[8] I.K. Argyros and A.A. Magre˜nan, ´ On the convergence of an optimal fourth-order family of methods and its dynamics, Appl. Math. Comput. 252 (2015), 336–346.
[9] A.F. Beardon, Iteration of Rational Functions, vol. 132 of Graduate Texts in Mathematics, Springer, New York, NY. USA, 1991.
[10] P. Blanchard, Complex analytic dynamics on the Riemann sphere, Bull. Amer. Math. Soc. 11 (1984), no. 1, 85–141.
[11] P. Blanchard, The dynamics of Newton’s method, Proc. Symp. Appl. Math. 49 (1994), 139–154.
[12] C.E. Cadenas, On Several Gander’s theorem based third-order iterative methods for solving nonlinear equations and their geometric constructions, J. Numer. Math. Stoch. 9 (2017), no. 1, 1–19.
[13] C.E. Cadenas, A family of Newton-Halley type methods to find simple roots of nonlinear equations and their dynamics, Commun. Numer. Anal. 2017 (2017), no. 2, 157–171.
[14] C.E. Cadenas, A family of Newton-Chebyshev type methods to find simple roots of nonlinear equations and their dynamics, Commun. Numer. Anal. 2017 (2017), no. 2, 172–185.
[15] C.E. Cadenas, Cuencas de atracci´on usando MatLab, Rev. MATUA, 4 (2017), no. 2, 1–15.
[16] C.E. Cadenas, On Geometric Constructions of third order methods for multiple roots of nonlinear equations, Commun. Numer. Anal. 2018 (2018), 42–55.
[17] C.E. Cadenas, A new approach to study the dynamics of the modified Newton’s method to multiple roots, Bull. Math. Soc. Sci. Math. Roumanie.Tome 62 110 (2019), no. 1, 67—75.
[18] B. Campos, A. Cordero, A. Magre, J.R. Torregrosa and P. Vindel, Bifurcations of the roots of a 6-degree symmetric polynomial coming from the fixed point operator of a class of iterative methods, Proc. CMMSE, 2014, pp. 253–264.
[19] B. Campos, A. Cordero, A.A. Magre˜n´an, J.R. Torregrosa and P. Vindel, ´ Study of a biparametric family of iterative methods, Abstr. Appl. Anal. 2014 (2014), ID 141643, 12 pages.
[20] B. Campos, A. Cordero, J.R. Torregrosa and P. Vindel, Dynamics of the family of c-iterative methods, Int. J. Comp. Math. 92 (2015), no. 9, 1815–1825.
[21] B. Campos, A. Cordero, J.R. Torregrosa and P. Vindel, Behaviour of fixed and critical points of the (α, c)-family of iterative methods, J. Math. Chem. 53 (2015), 807-–827.
[22] C. Chun, M.Y. Lee, B. Neta and J. Dˇzuni´c, On optimal fourth-order iterative methods free from second derivative and their dynamics, Appl. Math. Comput., 218 (2012), no. 11, 6427–6438.
[23] A. Cordero, J.R. Torregrosa and P. Vindel, On complex dynamics of some third-order iterative methods, Proc.Int. Conf. Comput. Math. Meth. Sci. Engin. I, 2011, pp. 374–383.
[24] A. Cordero and J.R. Torregrosa, Study of the dynamics of third-order iterative methods on quadratic polynomials, Int. J. Comp. Math. 89 (2012), 1826–1836.
[25] A. Cordero, J.R. Torregrosa and P. Vindel, Dynamics of a family of Chebyshev-Halley type methods. Appl. Math. Comput. 219 (2013), no. 16, 8568–8583.
[26] A. Cordero, J.R. Torregrosa and P. Vindel, Period-doubling bifurcation in the family Chebyshev-Halley type methods, Int. J. of Comp. Math. 90 (2013), no. 10, 2061–2071.
[27] A. Cordero, J.R. Torregrosa and P. Vindel, Bulbs of period two in the family Chebyshev-Halley type methods on quadratic polynomials, Abstr. Appl. Anal. 2013 (2013), ID 536910, 10 pages.
[28] A. Cordero, J. Garc´ıa-Maim´o, J.R. Torregrosa, M. Vassileva and P. Vindel, Chaos in King’s iterative family, Appl. Math. Lett. 26 (2013), no. 8, 842–848.
[29] A. Cordero, M. Fardi, M. Ghasemi, J.R. Torregrosa, Accelerated iterative methods for finding solutions of nonlinear equations and their dynamical behavior, Calcolo 51 (2014), 17–30.
[30] R.L. Devaney, The Mandelbrot set, the Farey tree and the Fibonacci sequence, Amer. Math. Mon., 106 (1999), no. 4, 289–302.
[31] B.I. Epureanu, H. S. Greenside, Fractal basins of attraction associated with a damped Newton’s method, SIAM REV 40 (1998), no. 1, 102–109.
[32] J.M. Guti´errez, M.A. Hern´andez and N. Romero, Dynamics of a new family of iterative processes for quadratic polynomials, J. Comput. Appl. Math. 233 (2010), 2688–2695.
[33] J.M. Guti´errez, A.A. Magre˜nan and J.L. Varona, ´ Fractal dimension of the universal Julia sets for the ChebyshevHalley family of methods, ICNAAM 2011. AIP Conf. Proc., 1389 (2011), no. 1, 1061–1064.
[34] G. Honorato, S. Plaza and N. Romero, Dynamics of a high-order family of iterative methods, J. Complexity 27 (2011), 221–229.
[35] K. Kneisl, Julia sets for the super-Newton method, Cauchy’s method and Halley’s method, Chaos 11 (2001), no. 2, 359–370.
[36] M.Y. Lee and C. Chun, Attracting periodic cycles for an optimal fourth-order nonlinear solver, Abstr. Appl. Anal. 2012 (2012), ID 263893, 8 pages.
[37] T. Lotfi et al, A variant of Steffensen–King’s type family with accelerated sixth-order convergence and high efficiency index: Dynamic study and approach, Appl. Math. Comput. 252 (2015), 347–353.
[38] A.A. Magre˜nan, ´ Estudio de la din´amica del m´etodo de Newton amortiguado (Ph.D. thesis), Servicio de Publicaciones, Universidad de La Rioja, 2013.
[39] B. Neta, M. Scott and C. Chun, Basins of attraction for several methods to find simple roots of nonlinear equations, Appl. Math. Comput. 218 (2012), 10548–10556.
[40] B. Neta, M. Scott and C. Chun, Basin attractors for various methods for multiple roots, Appl. Math. Comput. 218 (2012), no. 9, 5043–5066.
[41] C.A. Pickover, A note on chaos and Halley’s method, Commun. ACM 31 (1988), no. 11, 1326–1329.
[42] S. Plaza and N. Romero, Attracting cycles for the relaxed Newton’s method, J. Comput. Appl. Math. 235 (2011), 3238–3244.
[43] G.E. Roberts and J. Horgan-Kobelski, Newton’s versus Halley’s method: a dynamical system approach, Int. J. Bifurcat. Chaos 14 (2004), no. 10, 3459–3475.
[44] J.F. Traub, Iterative methods for resolution of equations, Prectice Hall, NJ 1964.