[1] A. Abubaker and M. Darus, On a certain subclass of analytic functions involving differential operators, Transyl. J. Math. Mech. 3 (2011), no. 1, 1–8.
[2] F.M. Al-Oboudi, On univalent functions defined by a generalized S˘al˘agean operator, Int. J. Math. Math. Sci. 2004 (2004), no. 27, 1429–1436.
[3] A. Alsoboh and M. Darus, On Fekete-Szeg¨o problem associated with q-derivative operator, J. Phys.: Conf. Ser. 1212 (2019), 012003.
[4] A. Alsoboh and M. Darus, On q-starlike functions with respect to k-symmetric points, Acta Univer. Apulensis 60 (2019), 61–73.
[5] T.O. Opoola, On a subclass of univalent functions defined by a generalized differential operator, Int. J. Math. Anal. 11 (2017), no. 8, 869–876.
[6] S.H. Hadi, M. Darus and A. Alb Lupa¸s, A class of Janowski-type (p, q)-convex harmonic functions involving a generalized q-Mittag-Leffler function, Axioms 12 (2023), no. 2, 190.
[7] H.M. Srivastava, S.H. Hadi and M. Darus, Some subclasses of p-valent γ-uniformly type q-starlike and q-convex functions defined by using a certain generalized q-Bernardi integral operator, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 117 (2023), 50.
[8] L.M. Fatunsin and T.O. Opoola, New results on subclasses of analytic functions defined by Opoola differential operator, J. Math. Syst. Sci. 7 (2017), 289–295.
[9] B.A. Frasin, Family of analytic functions of complex order, Acta Math. Acad. Paedagogicae Ny 22 (2006), no. 2, 179–191.
[10] G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge university press, Cambridge, 2004.
[11] M.E. Ismail, E. Merkes, and S. David, A generalisation of starlike functions, Transyl. Complex Variables, Theory Appl. 61 (1990), 77–84.
[12] F.H. Jackson, On q-functions and a certain difference operator, Trans. Royal Soc. Edinb. 46 (1990), no. 2, 253–281.
[13] F.H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math. 41 (1910), 193–203.
[14] G. S˜al˜agean, Subclasses of univalent functions, Lecture Notes in Math, Springer-Verlag, Heidelberg (1983), 362– 372.
[15] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), no. 1, 109–116.